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The Origin of Symmetry in the Metabolism of Cancer  

From Systems Biology to Translational Medicine 
FRANCESCO GATTO 
Department of Biology and Biological Engineering 
Chalmers University of Technology 
 
ABSTRACT 
Why do we not have a cure for cancer yet? Cancer is the malady of the century, the most intensely studied 
disease of all time. The question is puzzling. It assumes that cancer is a single entity that we can target and 
eradicate. On the contrary, the current theory on the origin of cancer dictates that each patient bears a cancer 
that is an exquisite experiment of nature, in which a unique constellation of genetic aberrations confers 
malignant traits upon the cell, which enable it to proliferate abnormally and survive until death of the host. 
Nevertheless, the question is legitimate. Cancer is also a single entity because, in spite of the heterogeneity 
of origins, every individual cancer in its evolution ought to converge in the acquisition of the same malignant 
traits, e.g. abnormal proliferation and ability to metastasize. I define this phenomenon of convergent 
evolution as the symmetry of cancer and each of these traits as symmetric, reminiscent of the fact that as 
diverse as two individual cancers can be in their origin, they can be repositioned along the trait to be 
identical. This thesis is dedicated to understanding the origin of symmetry of cancer through systems 
biology. In particular, I focused my interest in a specific malignant trait, the reprogramming of cell 
metabolism. In order to undertake an unbiased view of this complex system, I adopted a systems level 
perspective, in which genome-scale changes of gene and protein expression (so-called omics) attributable to 
cancer were bridged with the network of reactions that form the backbone of human metabolism. 
 
First, we found that any cancer seemed to acquire a symmetric overexpression of nucleotide metabolism, 
regardless from where it originated (Paper I). However, this symmetry seems rather to represent an 
adaptation to a metabolic requirement of cellular proliferation and not an obligate metabolic reprogramming 
to foster cancer evolution. Hence, we sought to characterize those gene expression changes occurring in 
presence of an oncogenic mutation, again irrespective of the tissue of origin or other confounding factors 
(Paper II). This analysis revealed that oncogenic mutations independently converge on the deregulation of a 
sub-network revolving around the metabolism of arachidonic acid and xenobiotics, which we termed AraX.  
 
Second, the symmetry of cancer metabolism broke with the most common form of kidney cancer, clear cell 
renal cell carcinoma (ccRCC). We reported that a ccRCC-specific set of genetic aberrations is associated 
with the emergence of a uniquely compromised metabolic network (Paper I). These outstanding features of 
ccRCC metabolism provided an opportunity for translational medicine. We proved that it is possible to 
exploit the ccRCC defective network to computationally predict metabolic liabilities that induce selective 
cell death in ccRCC (Paper III). Moreover, these changes in metabolic regulation unique to ccRCC can be 
distilled, through an algorithm of our creation, Kiwi (Paper V), in a coordinated regulation of 
glycosaminoglycan biosynthesis (GAGs) (Paper IV). This is mirrored by an altered profile of GAGs in 
kidney-proximal fluids, urine and blood, that we prove bearing a strong, accurate, and robust diagnostic 
value in metastatic ccRCC.  
 
The case of ccRCC and a potential role of inflammation in AraX may raise more doubt than support on the 
existence of symmetry in the metabolic reprogramming in any cancer cell (Paper VI). Perhaps researchers 
are simply observing an enhanced plasticity in the adaptation to ever-changing conditions that is induced by 
mutations, but which is not symmetric under any specific trait and as such not essential to cancer. Yet, I 
argue that the quest for searching for the symmetry in cancer should not be abandoned. This quest is of 
paramount importance to unlock the discovery of a cure for cancer. 
 
Keywords: cancer metabolism; omics; systems biology; network modeling; genome-scale metabolic 
modeling; kidney cancer.  
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Chapter I: Introduction to origin of symmetry in cancer 
Long before I started my doctoral studies, a question used to whirl my mind every now and then, 
probably coincidental with the occurrence of a cancer in a person somewhat related to me. Why do 
we not have a cure for cancer yet? In my regular citizen mindset, the word cancer was mostly 
associated with a lethal condition, of obscure origin, heavily studied and yet poorly treated (by 
means of puzzling and only partially understood therapies, such as chemo or radio). Now, from a 
scientist perspective, I figured that our communication to the public on what cancer is and how we 
deal with it is appalling. Nowadays, a cancer diagnosis does not necessarily correspond to a death 
sentence. Since money has poured in cancer research, our progresses in understanding this 
phenomenon have been overwhelming. Lastly, despite the justified caution adopted by scientists 
when making predictions about cancer, the perspective of an end to cancer does seem at hand. I 
strongly discourage to interpret these three statements as if cancer was not a foremost hurdle for 
public health. I feel compelled to report that this pathology currently represents the second leading 
cause of death worldwide (1). Nevertheless, the public perception of cancer appears to be distorted 
compared to the outstanding scientific and medical advances accomplished in the last decades of 
research (2, 3). 
 
In this introduction, I elaborate the three statements above in the attempt to revert our slanted view 
of cancer. Hopefully, a clearer picture will emerge. Yet, incomplete. And these knowledge gaps 
provide the rationale of my contribution to the science of cancer. 
 
The origin of symmetry – From Rous to Weinberg 
In 1910, Frances Peyton Rous made an extraordinary discovery (4). For the first time in history, 
Rous reported an origin to cancer1. Until then, cancer was observed and described by a number of 
physicians and scientists, but the reasons beyond its occurrence were elusive and attributed to 
factors fairly creative in hindsight (Probably the first description of cancer dates back to the 25th 
century BC, in an ancient Egyptian papyrus (5). Curiously, the Egyptians practiced a “surgical” 
removal of the abnormal mass to treat the disease. Tumor surgery is regarded still today as the most 
effective treatment for cancer.) In a landmark experiment, Rous extracted a connective tissue tumor 
(in medical terms, a sarcoma) from a chicken (Fig. 1-1). The chicken sarcoma was grinded and 
injected to a new host, i.e. an otherwise healthy chicken. Of key importance, Rous filtered the 
grinded sarcoma prior to injection. The new host developed a sarcoma itself. Given that the 
“inducing agent” was small enough to pass a filter, Rous concluded that the agent was a virus. The 
virus went down in history under the name of Rous sarcoma virus (RSV). In 1910, the origin of 
cancer was found to be a virus.  

 
Figure 1-1. A chicken affected with sarcoma, used as a model organism by Frances Peyton Rous in his experiment to understand the 
cause of cancer. Reproduced from (4). 
                                                
1 Always elusive to me was the distinction between the word cancer and tumor. A tumor is an abnormal mass of cells 
growing aberrantly in a tissue, such as the pancreas. Cancer is the malignant manifestation of a tumor, in which cells 
have the potential to migrate from the tissue of origin and colonize distant tissues, a process known as metastasis. 
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The modern theory on the origin of cancers draws from pivotal experiments by many influential 
scientists after Rous, most notably Katsusaburo Yamagiwa, and Koichi Ichikawa at Tokyo 
University (6). Despite the hype generated by Rous discovery (Ludwik Gross, a distinguished 
virologist, would declare at one point that it would be rather difficult to assume a fundamentally 
different etiology [than the viral origin] for human tumors), today we recognize that essentially two 
tumor types are induced by viruses in humans, namely cervical carcinomas (caused by the human 
papilloma virus, HPV) and hepatomas (cause by the hepatitis C-virus, HCV). Nevertheless, Rous’ 
experiment was epochal in that it provided a reproducible cause of cancer, paving the way to a 
clearer understanding on its origin. Yamagiwa’s and Ichikawa’s contributions follow the same line 
of argument, when they demonstrated that cancer could be induced by exposure to specific 
substances (today termed carcinogens). On the clinical side, the implications of these discoveries 
bore enormous potential. Surgery could be finally replaced by a treatment effectively eliminating 
the cause of cancer (e.g. the virus), rather than the consequence (e.g. the abnormal tumoral mass)2. 
  
A major revolution in biology was the resolution of the DNA structure by Francis Crick, Rosalind 
Franklin, James Watson, and Maurice Wilkins in the 1950s (7) and the role of genes in defining the 
molecular basis of cells. This increased knowledge on genetics enabled to discover that the ability 
of RSV to cause cancer could be ascribed to a single gene (termed v-src), which is carried by the 
virus. Unexpectedly, the probe that was designed to target the v-src sequence recognized instead a 
DNA sequence in uninfected cells. It became apparent that RSV hijacks and alters a regular human 
gene to confer cancer properties to the host cell. Importantly, Bruce Ames at University of 
California, Berkeley subsequently demonstrated that also carcinogens act in a similar fashion. They 
alter the sequence of genes on the human DNA thereby transforming normal cells into cancer cells 
(8). A permanent change in the DNA sequence is called a mutation, and by the 1970s, the origin of 
cancer was found to be mutations in the human DNA. 
 
Since these crucial discoveries, a race towards a complete mapping of the mutations at the origin of 
cancer started in the 1980s. Contrary to initial beliefs, the number of genes in which mutations were 
linked to carcinogenesis was not just a handful; conversely it seemed possible to constantly finding 
new cancer-causing mutations. As of April 2015, COSMIC (Catalogue Of Somatic Mutations In 
Cancer), a manually curated database for cancer mutations, lists 572 genes in which a mutation is 
causally implicated in cancer (9). Thanks to significant advances in the sequencing technology, in 
particular the advent of next-generation sequencing (NGS), it has been recently estimated that even 
though we have possibly discovered all the most commonly mutated genes, the number of genes 
that are rarely mutated yet potentially implicated in cancer will continue to rise in the future (10). 
The long-waited promise that a straightforward mechanism could explain the origin of cancer, as 
postulated when a sole mutation as simple as a single nucleotide polymorphism (SNP) in the HRAS 
gene was found to cause bladder cancer (11), was doomed to be abandoned forever. In 1976, Peter 
Nowell advanced the theory of Darwinian evolution to explain the heterogeneity of mutations 
observed in different cancers (12). He postulated that in a population of normal cells subject to 
mutations in cancer-associated genes (such as those listed in COSMIC), only those cells (clones) 
that survive and in turn gain a selective growth advantage compared to the surrounding normal cells 
have the potential to seed a tumor. In particular, bearing a mutation in these key genes arms the 
transformed cells with aberrant properties typical of cancer. For example, the above-mentioned 

                                                
2 This historical event is reminiscent of those explanations that my former professor of thermodynamics used to provide 
to justify our interest in this otherwise intangible subject. In the 1920s, it was believed that the cause of the incomplete 
yield in ethanol observed in industrial distillations was the limited volume of reactors, which would not allow enough 
time for the separation to take place. The engineers at the time designed and concocted increasingly bigger reactors (or 
abstrusely shaped), with the frustrating result that no higher concentration of alcohol was ever observed. Simple 
thermodynamics would have determined that the vapor mixture had reached equilibrium, so no further separation 
between water and ethanol would ever be possible. Nothing beats thermodynamics. 
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HRAS mutation in bladder cancer permanently alters the structure of the encoded protein, GTPase 
HRas or the transforming protein p21. p21 normally responds to stimulation by growth factors, 
which ultimately results in cell division. However, the mutated p21 is altered in such way that it is 
constitutively activated, regardless of the presence of growth factors, hence eliciting aberrant cell 
division. On the other hand, Nowell’s application of Darwinian evolution to cancer dictates that the 
environment eventually selects for the mutated clones that initiate a tumor. Indeed, HRAS mutations 
in tissues other than the bladder do not necessarily result in cancer. Already in the 1970s, this 
powerful concept framed the emerging heterogeneity of cancer mutations in the context of a simple 
theory, clonal evolution. Drawing from this, in 1982 Bert Vogelstein described the pathogenesis of 
colorectal cancer as the result of a precise succession of mutational events (Fig. 1-2). Even though 
this description is today considered an over-simplification, this proof-of-concept laid the basis for 
the modern theory on the origin of cancer. The modern theory on the origin of cancer prescribes 
that every tumor is a unique experiment of nature, in which mutations in key genes (also called 
driver mutations) together with accumulation of mutations in secondary genes (also called 
passenger mutations) define the fitness of a cancer clone in its strive to survive and proliferate in the 
host environment, namely the human body (13, 14). 
 

Figure 1-2. Vogelstein’s model of mutational events that correlate with each step in the adenoma–carcinoma sequence of colorectal 
cancerogenesis. Reproduced from (15). 
 
In spite of its elegance, the theory of clonal evolution is daunting under a clinical perspective. In 
recent years, NGS-aided sequencing of an increasing number of cancer genomes has confirmed the 
broad extent of genomic heterogeneity of the disease. Genomic heterogeneity was shown to 
encompass both localized and distal tumors in the same patient (16-18). Simply put, the fact that 
every tumor seems to stem from a unique combination of mutations (despite their recurrences) 
renders a rational treatment of the disease hardly possible. Indeed, the argument of genomic 
heterogeneity in cancer is one of the pillars in the foundation of personalized (or precision) 
medicine (19). Precision medicine advocates tailoring a treatment to the defined molecular features 
of a patient’s cancer. As for 2015, we are still far from individualization of medical treatments in 
the clinics, even though notable proofs-of-concepts have been published in the literature (20). More 
properly, the current application of precision medicine is patient stratification, which is not exactly 
a novel concept. On the contrary, patient stratification is among the oldest approaches used today in 
cancer treatment (and yet poorly communicated to the general public). The most widespread form 
of cancer patient stratification is based on histopathology, or in other words, on the tissue of origin 
and the appearance of the tumor under the lens of a microscope. Under the perspective of patient 
stratification, the question “Why do we not have a cure for cancer?” looks inevitably dull: a cancer 
classified as testis cancer is curable in 95% of patients; conversely a triple-negative breast cancer 
has among the lowest survival rates. I insist on this point because I realized that patient stratification 
based simply on histopathology (also commonly referred to as the cancer type) is likely the most 
relevant carrier of information on the biology of cancer itself (21), possibly questioning the basic 
arguments of a dramatically more complex philosophy such as precision medicine.  
 
In this fashion, the need to disentangle cancer heterogeneity by means of detailed patient 
stratification has been questioned recently (22). Using the same arguments as precision medicine, 
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but reversed, one could argue that, in the end, some characteristics are clearly shared by all cancers 
despite the genomic heterogeneity. Phenotypic traits as aberrant proliferation and invasion are 
observed in virtually all cancer types. In a landmark review in 2000, Douglas Hanahan and Robert 
Weinberg described six phenotypic traits that all cancers seem to acquire, which they called the 
hallmarks of cancer (23) (this list was eventually expanded in 2011 to comprise four emerging 
traits, in Figure 1-3 (24)). A similar argument was put forward also by other researchers in the same 
year, like Gerard Evan and Karen Voudsen (25). In 2004, Vogelstein concluded that the origin of 
cancer itself must explain the convergence on these phenotypic traits, e.g. the number of mutations 
found to drive cancer is higher than the number of pathways altered by the mutations (the pathways 
being ultimately responsible for the acquisition of the cancer phenotype) (26). This argument stood 
solid after the advent of NGS, which enabled the whole genome sequencing of thousands of tumor 
DNA (27). The biological phenomenon in which some phenotypic traits are gained by means of 
distinct genetic trajectories is known as convergent evolution. In this thesis, I will refer to it also as 
convergence or symmetry, reminiscent of the fact that any two cancers as different as they may 
appear may always be repositioned to look symmetric according to a phenotypic trait. Let me 
elaborate this definition with an example (28). If one were to observe a multiple myeloma (a cancer 
of plasma cells) and a glioblastoma multiforme (a primary brain tumor), it is easy to recognize how 
different they manifest themselves. Multiple myeloma is typically diagnosed following symptoms 
of renal failure, anemia, etc, while the most common symptom of glioblastoma multiforme is a 
neurological deficit or the like. Multiple myeloma is a liquid tumor, glioblastoma multiforme is a 
solid tumor. Multiple myeloma is more common among African Americans, glioblastoma 
multiforme has higher incidence among Caucasians, Hispanics, and Asians. Notwithstanding these 
differences, a multiple myeloma and a glioblastoma multiforme have always a trait in common: an 
abnormal accumulation of cells due to uncontrolled cell proliferation. If one discarded all other 
traits and observed only this specific trait, then the two tumors would appear identical. Abnormal 
proliferation defines an axis of symmetry for cancer, i.e. it is a symmetric trait. 
 

Figure 1-3. The hallmarks of cancer as described by Hanahan and Weinberg in 2011. The two researchers proposed that virtually 
every cancer acquires these phenotypic traits. Reproduced from (24). 
 
NGS however also highlighted some discrepancies. For example, in a whole-genome sequencing 
study of 183 lung adenocarcinomas, the extent to which mutations could explain the acquisition of 
the hallmarks was fairly limited (29). This conclusion raises some fundamental questions in the role 
of mutations and the hallmarks. There are indeed other biological mechanisms different than 
mutations that drive cancer, most notably copy number alterations. Alternatively, it could be that 
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not all hallmarks are actually consequential the acquisition of mutations, but rather a collateral 
manifestation that promotes but is not essential to the evolution of cancer. Or perhaps we are still 
far from knowing the true origin of symmetry in cancer.  
 
Inspired by the philosophy of Weinberg (22), I focused my doctoral studies in the search for 
simplicity in cancer3. The contribution of mutations to the origin of symmetry in cancer has 
therefore become the central question of my research. 
 
Banquet – From Warburg to Cantley 
The early NGS era delivered a number of surprises in the search of mutations recurrent in cancer 
(and as such candidate to elucidate its origin). In two studies published between 2008 and 2009, an 
unexpected mutation in the cytosolic NADP+-dependent isocitrate dehydrogenase 1 gene (IDH1) 
was found in 12% of glioblastoma multiforme and in 8% of acute myeloid leukemia (a blood cell 
tumor) (30, 31). IDH1 encodes for an enzyme responsible to catalyze the metabolic reaction that 
converts isocitrate to 2-oxoglutarate. The discovery of IDH1 mutations in a significant proportion 
of cancer cells provided among the first direct connections between the origin of cancer and 
deregulation of metabolism. Later research would demonstrate that the primary feature being 
selected for in these tumors is the ability of mutated IDH1 to produce a distinct metabolite different 
from 2-oxoglutarate, named 2-hydroxyglutarate (2HG) (32). 2HG in turns interferes with cell 
differentiation and epigenetics to promote cancer progression (33). 
 
Altered metabolism, and in particular cellular energetics, has been regarded a phenotypic trait of 
cancer since long before the discovery of recurrent IDH1 mutations. The first reports that cancers 
may reprogram metabolic fluxes to match different requirements for proliferations were published 
by Otto Warburg in 1920s. Warburg noted that, even in the presence of oxygen, cultured cancer cell 
lines prefer to ferment glucose into lactic acid, rather than undergo a complete oxidation through 
the tricarboxylic acid (TCA) cycle, which is more favorable in terms of ATP yield (a phenomenon 
dubbed aerobic glycolysis or Warburg effect). These repeated observations led him to conclude in 
1956 that the origin of cancer stands in the preference of aerobic glycolysis by malignant cells as 
opposed to normal cells (34). As noted above, this theory has been today replaced, in particular 
considering that aerobic glycolysis has been observed also in normal proliferating cells (35). 
Nevertheless, the importance of metabolism, as prospected by Warburg, has been considerably 
revived in the last decade. Indeed, besides the discovery of recurrently mutated metabolic enzymes 
such as IDH1 (though the list comprises other TCA enzymes, like succinate dehydrogenase in 
ovarian cancer or fumarate hydratase in renal cell carcinoma (36)), evidence started accumulating 
that implicates renowned driver mutations with metabolic reprogramming. In 2008, an influential 
discovery occurred in Lewis Cantley’s laboratory when the last step of glycolysis, catalyzed by 
pyruvate kinase (PK), was associated with the expression of the enzyme isoform, PKM2, specific to 
cancer cells (37). The authors proved that PKM2 expression is necessary for aerobic glycolysis, 
which in turn provides a selective growth advantage to the cancer cell. This discovery provided a 
first mechanistic explanation for the Warburg effect. PKM2, counter intuitively, limits the flux of 
glucose-derived carbon to pyruvate. The effect of limiting PK flux results in an increase of the 
carbon pool for those pathways branching from glycolysis, which are typically anabolic (e.g., 
nucleotide biosynthesis). Matthew Vander Heiden et al. argued that the increased utilization of 
glycolysis under normoxia (in other words, the Warburg effect) to boost anabolic pathways is the 
phenotypic trait being selected for in cancer, as it (intuitively) correlates with the greater metabolic 
requirements of a proliferating cell (38). Many reports challenged this theory, proving instead that 
the major effect of aerobic glycolysis is to provide reductive power (mostly in the form of 

                                                
3 Despite being inspired by his philosophy, I should say that Weinberg does not share a bit of my optimism towards the 
idea of simplicity (but he argues even stronger against dull complexity). Moreover, he spends bitter words towards 
systems biology, which, on the other hand, constitutes the spinal cord of the methods I adopted in my research. 



 6 

NADPH), which cancer cells utilize to maintain a constant pool of reactive oxygen species (ROS) 
(39). In 2011, Rob Cairns et al. revisited metabolic reprogramming in cancer as a mechanism 
essential to cell survival, rather than growth (40). As for today, it is still unclear whether metabolic 
reprogramming due to cell survival is predominant with respect to meeting the requirements of 
proliferation. The increased flux in a given metabolic pathway enabled by aerobic glycolysis seems 
to be context-dependent, attributable to either the cancer type or the evolutionary stage or the 
microenvironment. Lindsey Boroughs and Ralph Deberardinis recently acknowledged that we 
might just be observing a different angle of the overwhelming plasticity of cancer, i.e. the ability of 
malignant cells to rapidly adapt their metabolism to changes in their genome and in their 
environment (41). In this sense, my early research attempted to elucidate the extent to which 
metabolic reprogramming is symmetric in cancer.  
 
Despite the complexity of metabolic reprogramming, a clear view emerged in the last decade of 
molecular research. As much as it can be heterogeneous and context-dependent in its realization, 
the reprogramming of metabolism is still consequential an oncogenic event. For example, the 
acquisition of a mutation determines changes in metabolism that are either not observed in the 
parental cell or can be abrogated when the effects of the mutation are averted. As noted above, 
causally implicated mutations in cancer were found to drive unforeseen effects also at the metabolic 
level, besides their established role in controlling other cancer hallmarks. Voudsen and colleagues 
boldly noted that even the profoundly studied and intuitive implications of the most recurrently 
mutated gene in cancer, TP53, are less robust than the effects which TP53 mutations have on 
metabolism (42). TP53 is essential to arrest cell cycle and induce apoptosis in the event of 
genotoxic stress, and loss of these functions is widely regarded to be the key mechanism of cancer 
initiation. Nevertheless, mice with different TP53 mutations failed to develop tumors even if the 
encoded protein effectively lost the above-mentioned functions (43, 44). At the same time, in these 
experiments the protein retained a similar metabolic control to the wild-type protein. This suggests 
that only TP53 mutations that result in metabolic reprogramming are indeed oncogenic, and 
provides the argument for the centrality of metabolism proposed by Voudsen and colleagues. Many 
studies exploiting genetically engineered mice implicated metabolic reprogramming as a major 
consequence of the acquisition of common cancer-associated mutations, like KRAS (45) or NFE2L2 
(46). 
 
Until now, the definition of metabolic reprogramming has been loosely defined as a rewiring of 
metabolic fluxes, without much detail on which fluxes and to which value. In general, I left this 
unspecified due to the above-mentioned complexity of observed patterns. Our view on metabolic 
reprogramming has evolved rapidly in the last years. Possibly, the only symmetry seems to be the 
Warburg effect. Upon transformation, in vitro, in vivo, and even in situ experiments agree that 
cancer cells increase the import of glucose and its conversion rate to lactate, seemingly regardless 
of oxygen levels. To complement this view, it should be acknowledged that increased aerobic 
glycolysis is associated with proliferating cells in general, and possibly a conserved metabolic 
switch in the evolution of human cells. Plus, there are cancers in which the Warburg effect is simply 
not observed. For example, a subset of melanomas defined by overexpression of PPARGC1A (also 
known as PGC1α) displays a distinctive metabolic state characterized by elevated mitochondrial 
respiration, as opposed to PGC1α-negative melanomas that are highly glycolytic (47). A similar 
observation regards diffuse large B cell lymphoma, where a tumor subset insensitive to inhibition of 
B cell receptor signaling also featured a higher rate of mithochondrial respiration (48). Besides 
aerobic glycolysis, molecular biology studies have reported other metabolic switches as symmetric 
in cancer (Fig. 1-4): aerobic glycolysis (45, 49), addiction to glutamine (50, 51), de novo 
lipogenesis (52), essentiality of one-carbon intermediates (53), reliance on autophagy and 
macropinocytosis (54, 55), reactive oxygen species homeostasis (56) and dependence on 
mitochondrial respiration (57-59). In line with above, none of these metabolic programs are 
universally shared among all cancer cells, yet most of these follow an oncogenic event (60). For 
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example, it was observed that the phosphoglycerate dehydrogenase (PHGDH) gene is essential in 
breast cancer cell lines. This gene encodes for the PHGDG enzyme that catalyzes the first step of de 
novo biosynthesis of serine, a non essential amino acid, from 3-phosphoglycerate, a glycolytic 
intermediate. Possemato and colleagues observed that the gene locus of PHGDH resides in a region 
of recurrent copy gain in breast cancer, and this correlates with dependence on this pathway for 
cancer survival (61). To follow on the essentiality of this pathway: Voudsen lab proved that TP53 
deficient tumors depends on extracellular serine to control oxidative stress; Zhang et al. 
demonstrated that initiation of non small lung cell carcinoma relies on glycine metabolism to 
sustain pyrimidine biosynthesis; Kim et al. showed that serine hydroxymethyltransferase is essential 
for glioma survival (62-64). These researchers employed state-of-art technology to back their 
conclusions, but the observation that cancer cells have outstanding serine requirements is not 
exactly novel, and was first reported by Regan and colleagues in 19694,5 (65). A key difference 
between earlier and recent studies, however, is that the latter generally proved that the metabolic 
reprogramming is a product of oncogenesis, thereby providing both an insight in how cancer 
evolves and a therapeutic window for its treatment. The case of serine is one of the many examples 
of metabolic reprogramming in cancer uncovered within the last five years. I refer to some excellent 
reviews for a broader overview of other oncogenic events with consequences in cancer metabolism 
(33, 38, 40, 66, 67). 
 
My interest in metabolism was fostered, perhaps trivially, by the expertise of my research group. 
Hence, during my doctoral studies, I decided to focus on metabolism to exploit the accumulated 
knowledge in my group. Once again, the trend in the scientific literature seemed to suggest a 
personalized metabolic reprogramming depending on where and how the tumor formed. 
Nevertheless, metabolic reprogramming is an oncogenic event, and virtually all cancers rewire their 
metabolic fluxes either to survive or to proliferate (or both). In line with the arguments outlined in 
the previous section, a key objective of my research was to detect if and how distinct cancers are 
symmetric in the reprogramming of metabolism, and how much of this symmetry should be 
attributed to an oncogenic event.  
 
Standing in the way of control – From bioinformatics to systems biology 
Cancer is a complex system. A complex system is any phenomenon with observable collective 
behaviors that emerge from the interactions of its components (68). An impressive example of a 
complex system is human society, in which the seamless interaction between billion of individuals 
has given rise to uncountable collective behaviors, like politics, religion, sport, and technology. The 
same interactions were responsible for the evolution of society and adaptation to different climates 
or changes due to natural disasters. In general, a complex system is described by five characteristics 
(69): 

1. A network of interacting components, which define the system; 
2. Emergence, i.e. the properties that a system possesses by means of its interactions; 
3. Self-organization, i.e. the process by which order arises out of an unordered system via the 

spontaneous interactions of its components; 
4. Evolution, i.e. the increase in a system’s fitness over time through changes in the 

interactions or in the components; 
5. Adaptability, i.e. the ability of the system to react to changes in the environment. 

 
 

                                                
4 Intriguingly, Regan et al. proposed to target serine hydratase or treatment with serine antimetabolites as a cure for 
leukemia, which is essentially the same strategy advocated by all the recent literature here cited. 
5 Even earlier (1959) was the article that described asparagine as the first non essential amino acid to become essential 
in cancer (see H. Eagle, Amino Acid Metabolism in Mammalian Cell Cultures. Science 130, 432-437 (1959)). 
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Figure 1-4. Traits of metabolic reprogramming in cancer deemed symmetric in molecular biology. Key: 1C – One-carbon; GSH – 
Glutathione; GSSG – Glutathione disulfide; THF – Tetrahydrofolate. 
 
Strikingly, very disparate phenomena in our reality can all be classified as complex systems.  
Swarming is the collective behavior of some animal species in which aggregation typically results 
in migratory fluxes. Urbanization is a shift of unrelated human beings from rural zones to cities that 
results in the concentration of goods and services in a relatively small area. Consciousness is 
putatively emerging from the firing of billions of neurons in the brain with no single neuron 
directing the overall flow. Notwithstanding the unrelatedness of these systems, they are all the 
expression of a network. Among the discoveries that had the greatest impact in the science of 21st 
century stands the realization that the inherent structure of all these networks (in mathematical 
jargon, the topology) is not random. On the contrary, it originates from the same self-organizing 
principles. Finally, it enables the emergence of some outstanding properties that we all experience, 
but we rarely appreciate. If networks were purely random, two nodes have the same probability to 
share a link than any other pair of nodes in the network. The model that describes the origin of 
random networks was derived by Paul Erdős and Alfréd Rényi in 1959 (70). However, real 
networks are not random, despite the fact that there is no mastermind and no blueprint beyond the 
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origin of a link between a pair of nodes (e.g. two neurons in the brain). Indeed, Duncan J. Watts and 
Steven Strogatz realized that real networks featured the popular culture concept of six degrees of 
separation, i.e. the fact that it takes at most six steps to reach any two nodes in a network (also 
called small world property). However, such property is not observable in purely random networks 
described by the Erdős-Rényi model. Hence, in 1998, they developed a model in which a network 
can emerge randomly from its constituent nodes and yet feature the small world property as 
experienced in real networks (Watts-Strogatz model (71)). The Watts-Strogatz model represented 
an extraordinary advancement in our understanding on the origin of the networks that stand at the 
basis of many real complex systems. Nevertheless, it had a severe limitation, which sharply 
contrasted with one particular feature of real networks: it could not predict hubs, nodes (usually 
few) with an enormous amount of links compared to the rest. Hubs are everywhere in real networks. 
A few airports dominate the worldwide air traffic, while most airports only accommodate a handful 
of lines. In an online social network like Facebook, few users reach the upper limit of 5’000 
friendships (yet the great majority of registered users have less than 100). Albert-László Barabási 
and Réka Albert comprehended that real networks emerge randomly following a power-law 
distribution, in which the probability to encounter a node with a given number of links (so called 
degree) decays with the number of limits to the power of an exponent that they found to range 
between 2 and 3: 
 

! ! = !!! 
 
where k is the node degree and ! is the exponent of the power law (Fig. 1-5). The fact that the 
degree decays with a power law rather than an exponential law permits the existence of few but 
meaningful hubs in the network. In their seminal paper published in 1999, they identified that these 
networks (named scale-free networks) form from the system nodes by means of just two 
mechanisms: preferential attachment and growth (72). Without getting into much detail, the 
Barabási-Albert model provides two simple explanations that determine the self-organizing 
principles beyond real networks. Surprisingly, many disparate complex systems result from 
networks that follow a power-law distribution. This observation led the researchers to claim that 
scale-free networks are universal in nature, or at least its properties (73). 

Figure 1-5. Random networks are described by the Erdős-Rényi model (on top), and prescribes that most nodes in the network have 
approximately the same number of links. Real networks, however, are better resembled by the Barabási-Albert model (bottom), 
which predicts the existence of few nodes that have a great share of all network links. Reproduced from (74). 
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Biology investigates a number of systems that qualify as complex, such as the cell, ecological 
communities, epidemics, and human diseases. Biologists observe and strive to explain the different 
behaviors in each of this system, and they have developed techniques and theories to describe them. 
I outlined a quite extensive introduction to complex systems just to come to one claim: all these 
systems share a common point in that they are all expression of a self-organized network, which 
defines, by emergence, the system’s properties and functions (75). The area of biology that studies 
biological systems as the expression of interconnected networks of components is called systems 
biology. Systems biology is described as a holistic approach that aims at explaining behaviors of 
interest by modeling the interactions of all components within the system (76). This discipline is 
relatively recent, because its ambitions are only met by the simultaneous availability of three 
ingredients: a comprehensive description of the biological system as a network; large-scale 
experimental datasets that provide information on the components and/or the interactions in the 
network; a mathematical model that integrates data with the network thereby providing a platform 
to explain the system’s collective behavior of interest. 
 
Since my research questions revolve around two complex systems, cancer and metabolism, systems 
biology seemed the natural area of investigation. My work mostly focused on the mathematical 
modeling part. Most data used in my studies were retrieved from public repositories. They almost 
exclusively consist of omics data, i.e. the quantitative measurements of (possibly) all elements of 
the system belonging to a certain class (e.g. all transcripts in a cell, the transcriptome; or all genes in 
a cell, the genome). A greater availability of omics data was fostered, as mentioned earlier, by the 
NGS technology. The large scale of these data poses challenge in their storage, distribution, and, 
compellingly for my purpose, analysis. Bioinformatics is an interdisciplinary branch of computer 
science and biology that develops algorithms and software in order to treat and understand 
biological data. Thus, while systems biology laid the framework within which I tackled my research 
questions, bioinformatics provided the tools. I will not describe the details of the bioinformatics 
methods employed in the different papers chiefly for two reasons: first, they are widely established 
tools, from exploratory data analysis (e.g. principal component analysis) to differential expression 
analysis; second, they are question-dependent, by which I mean that, whenever possible, I adopted 
the available tool which I believed to confront a given research step best. On the other hand, I will 
spend some words on the network that defines my biological system of interest, which is the 
metabolic network. The comprehensive description of its nodes and links is captured by a relatively 
recent type of mathematical models, called genome-scale metabolic models (GEMs) (77). 
 
Genome-scale metabolic models are, in a nutshell, metabolic networks where the comprehensive 
list of metabolites, reactions, and the associated genes are encoded so to be machine-readable (Fig. 
1-6). A GEM of a given system (for example, a human cell) therefore attempts to include an 
exhaustive list of metabolic reactions occurring in that system, which is generally coded in the 
genome (hence the genome scale). GEMs are more than metabolic maps, because the represented 
network can be explored programmatically to answer more insightful questions about metabolism 
(78). In general, there are two main approaches to genome-scale metabolic modeling: topological 
analysis and simulations (79). Topological analysis refers to analyses that regard the properties of 
the network, for example a simple comparison of the number of nodes in two GEMs or the 
integration of omics data to highlight the importance of certain parts of the network in a condition. 
Topological analyses typically describe the metabolic network in different conditions. Simulations, 
on the other hand, require the formulation of GEMs as a mathematical model that, given some 
inputs, performs predictions. Virtually all simulations published in GEM literature yield predictions 
of metabolic fluxes, almost exclusively enabled by variations of a common theoretical framework, 
called flux balance analysis (FBA) (80). In brief, FBA returns distributions of metabolic fluxes such 
that the mass balance around each metabolite in the network is not violated (i.e. the sum of 
producing fluxes must equal the sum of consuming fluxes) and subject to some optimization 
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principle, for example that the flux distribution is wired towards the maximization of a metabolic 
task, like biomass growth. In systems biology, GEMs are arguably the only models that, first, have 
organized the unprecedented wealth of biochemical data on metabolism into almost complete 
metabolic networks; and second, entail a mathematical description of these networks that can be 
used both to extract information by integrating high-throughput data in the network topology and to 
simulate phenotypic flux distributions given some constraints (so called constraint-based 
reconstruction and analysis (81)). Applications of FBA flourished in the area of microbiology, and a 
number of success stories have been reported also for higher organisms (82). 
 

Figure 1-6. An overview on genome-scale metabolic models (GEMs) and their use in systems biology study of metabolic diseases. 
A) The human metabolic network is exhaustively compiled in terms of its metabolic reactions and their associations with gene 
products. B) The network is reformulated as a mathematical model, the GEM, in which each reaction is represented by a vector of 
stoichiometric coefficients according to which metabolites participate. Additional equations provide the standard formulation of a 
flux balance analysis (FBA) problem. C) Clinical studies provide the necessary knowledge to use the so generated GEM by 
generating genome-scale data about gene expression, protein expression, and metabolite levels in a physiologically and 
pathologically defined medical condition. GEMs exploit this knowledge to explore topological properties of metabolism or to 
simulate metabolic functions. D) Examples of such analyses is the extraction of parts of the metabolic network subject to significant 
transcriptional regulation (left) or the comparison of predicted flux distributions in two conditions, e.g. disease vs. healthy. Modified 
with permission from (79). 
 
At the start of my PhD, in 2012, use of GEMs for human studies was at its infancy. Indeed, the first 
human GEMs were published in 2007, Recon1 and EHMN (83, 84). A more comprehensive GEM, 
HMR, was released in 2012, and the model was updated in 2014 as HMR2 (85, 86). Recon2, a 
community-based effort to update Recon1, was also published around the same time (87). Since 
2011, the centrality of metabolic reprogramming in cancer induced researchers to elucidate for the 
first time global patterns in metabolism using GEMs (88). At the time of writing, six of these 
studies aimed at engineering cancer metabolism in silico so to uncover potential drug targets (89-
94). The goal was thus to provide an applied use of GEMs for the clinics. In this sense, this research 
qualifies as translational medicine. Three publications described cancer metabolism at the genome-
scale, using GEMs as a scaffold for integrating omics (95-97). As such, this research qualifies as 
systems biology. All these studies relied on topological analyses and simulations adapted from 
systems biology studies in lower organisms. However, when using human GEMs, a direct 
translation of FBA is hindered by the absence of an optimization principle for the fluxes. This lack 
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of tools prompted researchers to design novel methods to explore the space of flux distributions in 
human GEMs, like random sampling (98). 
 
Despite my personal interest in non-applied biological questions, the thesis encompasses both 
systems biology and translational medicine studies. In the course of my doctorate I started two 
translational medicine projects (Paper III and IV) that spurred from a system biology study with 
promising consequences for the clinics (Paper I). The remaining two systems biology studies relied 
mostly on bioinformatics (Paper I and II). Finally, I contributed in the development of a tool to 
bridge bioinformatics with topological analysis of GEMs (Paper V). 
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Chapter II: Systems biology - Symmetries in cancer metabolism 
Let us assume that the key of success for a cancer is held in the effective reprogramming of 
metabolism. Lessons from the other hallmarks of cancer, such as sustained proliferation, have 
taught researchers that multiple mutations can trigger the same cancer phenotype. Hence, it is 
reasonable to compare the phenotype of a cancer cell to the phenotype of its putative cell of origin, 
rather than comparing the mutations acquired along the transformation. Indeed, a change in 
phenotype, like the reprogramming of metabolism, is indicative that the process was important for 
the transformation of that cancer cell. A recurrent change in phenotype, which is a change 
independently observed in many unrelated cancer cells, is indicative that the process is important 
for the transformation of any cancer cell. We are required to take a look at all phenotypic traits that 
changed in many distinct cancer cells compared to their matched normal cells in order to identify 
those processes important for the transformation because a change was always observed. In other 
words, we need to test which traits are symmetric in cancer. This test has to be done at a global 
scale, by exhausting all possible phenotypic traits and all possible cancer cells. 
 
At the current technological state, this test is not feasible. Hence, my collaborators and I applied a 
number of simplifications and assumptions to leverage on the available technologies. First and 
foremost, the phenotype of a cell is approximated by its transcriptome (in some studies, proteome). 
Second, the symmetric phenotypic trait is acquired by the mixed population of cancer and stromal 
cells that form a tumor rather than the individual cancer cells. Third, a change in phenotype occurs 
if the probability that the event took place randomly (according to certain assumptions regarding its 
probability distribution) is deemed too low. Finally, the space of phenotypic traits is restricted to 
those cellular processes characterized by scientific efforts such as the Gene Ontology Consortium 
(GO) (99), or the Kyoto Encyclopedia of Genes and Genomes (KEGG) (100). 
 
With these assumptions in mind, I will explore the results of our first question: confined to 
metabolism, what phenotypic traits are symmetric in cancer? 
 
Answer #1: Revolving around RNA 
Metabolism is a complex system. It is the biological network of anabolic and catabolic reactions 
that transform nutrients into energy and building blocks for growth in a given organism. In humans, 
this network (also known as the metabolic network) emerges from interactions of 3765 gene 
products, according to the latest human GEM (85). At the time I first attempted to answer this 
question, however, the network was slightly smaller, and encoded by 3674 genes (86). I will refer to 
this set of genes as metabolic genes. Hence, if any of these genes show a consistent phenotypic 
change in all normal cells that transform into cancer, then we are observing the symmetry. In our 
first study (Paper I), we retrieved metabolic gene expression profiles (RNA-seq data, a NGS 
technology) from matched cancer-normal pairs, i.e. a resection of both the primary tumor and the 
healthy tissue was taken from the same patient. In total, 257 cancer-normal pairs, encompassing 
seven tissues, were evaluated. We measured similarity across samples in terms of metabolic gene 
expression, here regarded as metabolic phenotype readout, using principal component analysis and 
correlation-based hierarchical clustering. These analyses led us to three observations: 

1. Most cancer samples retain a substantial similarity in the expression of metabolic genes with 
the normal tissue of origin; 

2. If we focus on the subset of metabolic genes that displayed a strong change in expression in 
cancer vs. normal, then suddenly cancer samples are more similar to each other than to 
normal samples (Fig. 2-1); 

3. A number of cancer samples have a clearly deviating expression of metabolic genes 
compared to any other sample (Fig. 2-1). 
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Figure 2-1. Similarity analysis of metabolic gene expression profiles for cancer and tumor-adjacent normal samples. Hierarchical 
clustering of absolute metabolic gene expression levels (RPKM) for cancer and tumor-adjacent normal samples, featuring only those 
genes that significantly changed expression across most cancer types upon transformation, thereby subtracting the effect of the tissue 
of origin. Bottom: corresponding tissue of origin for each sample in the heatmap above. 
 
Observation #1 suggests that the extent of metabolic reprogramming during the transformation from 
normal to tumor is fairly limited. However, observation #2 argues that those metabolic genes whose 
expression is reprogrammed across most samples display a similar change, i.e. there is evidence of 
symmetry in the limited extent of metabolic reprogramming in cancer, regardless of the nature of 
the sample. Finally, observation #3 finds an exception to this symmetric behavior in a subset of 
samples. The strange case of the metabolism of these samples has fostered my curiosity and spurred 
a line of translational research on which I will come back to later in the thesis. 
 
The question for the acquisition of the symmetry in cancer metabolism stimulated also the interest 
of other researchers. Hu et al. (101) also found that cancer retains the metabolic gene expression 
profile of the normal tissue of origin to a large extent. They calculate that if we assume that a 
normal tissue (say breast) is 100% dissimilar to another tissue (say prostate), than the corresponding 
cancers (i.e. breast and prostate cancer, respectively) are only 63% dissimilar on average to the 
normal tissue of origin, but 83% dissimilar to each other. Therefore, the researchers conclude that 
there is little place for symmetry in cancer metabolism or, in their words, cancer-induced changes 
in the expression of metabolic genes are very heterogeneous across different tumor types. However, 
they also report one clear symmetric behavior: most genes involved in the pathway of pyrimidine 
metabolism are up-regulated (i.e. there is an increase in gene expression) in cancer vs. normal. In 
the same fashion as Hu et al., we also tried to characterize the pathways beyond the (limited) 
metabolic reprogramming, though using a different approach. We recognized the importance of the 
tissue of origin in defining the expression of metabolic genes and thus, in order to find symmetric 
patterns in cancer, we computed changes in pathway expression for each cancer type separately and 
then detected if some pathways were consistently regulated across most types (Fig. 2-2). To this 
end, we adopted a stringent method to report pathway expression changes, called consensus gene-
set analysis (102). Consistent with Hu et al., we also observe a substantial heterogeneity in the 
metabolic reprogramming of the different cancer types, with few recurrent patterns. As we conclude 
in Paper I, cancer cells orchestrate the expression of metabolic genes in a similar fashion only when 
it comes to nucleotide, glutamate, and retinol metabolism. Collectively, both studies agree that if 
any symmetry occurs in cancer metabolism, this should be searched in the metabolism of 
nucleotides, in particular pyrimidines.  
As I noted in the beginning of this paragraph, the symmetry in cancer metabolism captivated other 
researchers. Shortly after Hu et al. and we published our results, Nilsson et al. also identified a 
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number of metabolic genes that all cancers coordinately regulate during the transformation (103). 
Even though the authors did not formally collect these genes into pathways, they report that the top 
regulated genes belong to glycolysis, anti-oxidant metabolism, glycosylation pathways, nucleotide 
and deoxynucleotide metabolism. Once again, regulation of nucleotide metabolism is deemed 
symmetric in cancer. 
 

Figure 2-2. Regulation of canonical metabolic pathways in each cancer type according to changes in metabolic gene expression vs. 
matched tumor-adjacent normal tissues. Each box shows the log10 p-value of the gene-set representing a pathway in a certain cancer 
type, and the color indicates the overall direction of gene expression regulation for the gene-set (red – up, blue – down). Key: ccRCC 
– Clear Cell Renal Cell Carcinoma; BL – Bladder Urothelial Carcinoma; BR – Breast Invasive Carcinoma; HN – Head and Neck 
Squamous Cell Carcinoma; LUA – Lung Adenocarcinoma; LUS – Lung Squamous Cell Carcinoma; LI – Liver Hepatocellular 
Carcinoma; UC – Uterine Corpus Endometrioid Carcinoma. 
 
Taken together, three independent studies suggest that any tumor undertakes an obligate step during 
the transformation: the metabolism of nucleotides is up-regulated. Considering the global scale of 
these systems biology studies, one could even argue that nucleotide metabolism is the only 
coordinately regulated metabolic pathway at the transcriptional level in virtually all cancers or, in 
other words, that is symmetric in cancer. This conclusion is bold in light of observation #3. I will 
elaborate this discrepancy in the next chapter. 
 
Also, this conclusion raises a number of questions, first and foremost: why only nucleotide 
metabolism? And within nucleotide metabolism, why preferentially pyrimidines? Why is it up-

cc
R
C
C B
L

B
R

H
N

LU
A

LU
S LI U
C

Beta oxidationof phytanic acid (peroxisomal)
Beta oxidationof branched−chain fattyacids (mitochondrial)
Retinolmetabolism
Bile acidbiosynthesis
Pyruvatemetabolism
Miscellaneous
Valine, leucine and isoleucine degradation
Beta oxidationof poly−unsaturated fattyacids (mitochondrial)
Beta oxidationof unsaturated fattyacids (n−7) (mitochondrial)
Beta oxidationof even−chain fattyacids (mitochondrial)
Beta oxidationof odd−chain fattyacids (mitochondrial)
Leukotrienemetabolism
Estrogenmetabolism
Arachidonic acidmetabolism
Fattyacidactivation (cytosolic)
Porphyrinmetabolism
Androgenmetabolism
Serotoninandmelatoninbiosynthesis
Metabolismof xenobiotics bycytochromeP450
Glycerolipidmetabolism
Tricarboxylic acid cycle andglyoxylate/dicarboxylatemetabolism
Linoleatemetabolism
Tyrosinemetabolism
Purinemetabolism
beta−Alaninemetabolism
Cholesterol biosynthesis 1 (Blochpathway)
Glycolysis / Gluconeogenesis
Transport, extracellular
Fattyacidactivation (endoplasmic reticular)
Glycine, serine and threoninemetabolism
Valine, leucine, and isoleucinemetabolism
Cysteine andmethioninemetabolism
Ether lipidmetabolism
Ascorbate andaldaratemetabolism
Eicosanoidmetabolism
Sphingolipidmetabolism
Beta oxidationof unsaturated fattyacids (n−9) (peroxisomal)
Beta oxidationof even−chain fattyacids (peroxisomal)
Fattyacidbiosynthesis (even−chain)
Starchandsucrosemetabolism
Proteindegradation
VitaminDmetabolism
Beta oxidationof unsaturated fattyacids (n−9) (mitochondrial)
Fattyaciddesaturation (even−chain)
Glycerophospholipidmetabolism
Transport, endoplasmic reticular
Keratan sulfate biosynthesis
Glutathionemetabolism
Cholesterol biosynthesis 3 (Kandustch−Russell pathway)
Other amino acid
VitaminE metabolism
Steroidmetabolism
Alanine, aspartate andglutamatemetabolism
Transport, peroxisomal
Arginine andprolinemetabolism
Pyrimidinemetabolism
Glycosphingolipidbiosynthesis−lacto andneolacto series
O−glycanmetabolism
Transport, Golgi apparatus
Aminoacyl−tRNA biosynthesis
N−glycanmetabolism
Pool reactions
Histidinemetabolism
Transport, lysosomal
Chondroitin / heparan sulfate biosynthesis
Transport, nuclear
Glycosphingolipidmetabolism
Nucleotidemetabolism

2.3 5 1.9 5
5 5

2.1 2.5 1.3 2 5 1.5
2.7 1.6 5
2.8 1.7 3.3 1.5
2.5 1.7 1.7
2.5 1.6 5

5
5
5 1.5

1.7 5
1.4 5 1.8

5 2.2
5

2.1 4
2.6

1.4 2
1.8 1.8 5 2.9

2.6 5 2.1
1.7 3.5 1.6 1.4
5

2.1 5 5
1.8 3.8

1.6 3.3
3.4

2.4 5
5 2.2 2.6 3.1 1.4
5 2.7 3.8 2.6 1.7 1.3 4
2
1.9
1.8
2.4
2 1.3
1.3 1.5

1.4 1.4
1.9

1.4
1.4
2.1

1.4 2.3
1.4
1.4

1.3
1.4 1.3
1.6
1.6

1.3
2.1
2.1

1.4
1.8
3.5

1.6 2.9 1.4 2.1
1.6 1.8 2.2 1.3

1.4 2 1.9 1.3
1.6 1.5
1.4
1.5
2.1
2.1

1.4 4
2.8
1.4
1.8

2.6
2.7 1.6
1.3 1.7 3.7
2.4 1.6 1.3 1.9

−4 −2 0 2 4

log10p+_



 16 

regulated and what determines this increase in expression of nucleotide metabolism genes? Is this 
metabolic reprogramming an adaptive or an oncogenic process? Considering that these studies 
compared transformed proliferating cells in an abnormal microenvironment to wild-type and mostly 
quiescent cells in a physiological tissue, is this metabolic reprogramming a feature of cancer due to 
adaptation to the transformation or is it driven by the genetic aberrations at the origin of cancer, 
rendering the disease exposed to disruption in this process? 

 
I do not have answers. These questions require mechanistic molecular studies that, on the other 
hand, are hard to tackle at the same scale as the systems biology studies here cited. However some 
speculations are due, which we discussed also in a later review (Paper VI). In proliferating cells, 
nucleotides are continuously synthesized to meet the increased requirements of RNA and DNA due 
to growth. Nevertheless, this argument should apply to all macromolecular classes (proteins, lipids, 
etc.) and not only RNA or DNA. Using the same logic, we should have observed up-regulation of 
the corresponding anabolic pathways as well. As a matter of fact, these other classes are more 
prominent in terms of cellular composition. In an average mammalian cell, DNA accounts for only 
1% of dry weight, RNA slightly more, about 4%. For comparison, proteins accounts for 60%, and 
lipids for 18% (104). Nevertheless, the nucleotide-based macromolecular class of RNA is unique 
compared to other classes. Contrary to lipids and proteins, nucleotides cannot be readily scavenged 
from the extracellular environment; in other words, they are a rare nutrient for the cells. In the 
second place, the metabolism of RNA displays some distinctive patterns in terms of its relation with 
the growth rate. Experiments in bacteria have shown that when cells grow at higher rates, RNA 
levels exhibits the greatest relative change, in sharp contrast with DNA and proteins (105). This 
reflects the increasing concentration of ribosomes needed for higher protein synthesis with the 
growth rate. Whereas there is convincing evidence that DNA concentration is not limiting, the 
ribosome concentration and the corresponding protein synthesis rate are. Thus, already in 1983, 
Ehrenberg and Kurland proposed that an energy-efficient metabolic strategy for ribosomes at 
increasing growth rates is to proportionally increase both the substrate pool and the ribosome 
concentration (106). Since the most prominent phenotypic trait of a cancer cell is the growth 
advantage over the neighboring normal cells, this growth rate dependent effects on the cell 
macromolecular composition should be observed during the transformation. In this fashion, the 
here-in reported convergence on nucleotide metabolism up-regulation seems to support the model 
of Ehrenberg and Kurland. In other words, this convergence is probably not an oncogenic process, 
but an evolutionary conserved metabolic strategy that cells adopt when their growth rate increases. 
An alternative hypothesis that argues in favor of the oncogenic nature of nucleotide metabolism up-
regulation may reside in DNA damage. More than (virtually) any other normal cell, cancer cells 
suffer of significant DNA damage (107), which leads to unregulated cell division, and the 
reincorporation of nucleosides during DNA reparation requires a sanitized pool of these metabolites 
(as a side note, notable tumor suppressor genes belong to this process as they function in the 
cellular mechanisms of DNA repair, like BRCA). In this case, up-regulation of nucleotide 
metabolism may serve as a cancer-specific reprogramming and explain the observed convergence.  
 
Regardless of whether this process is adaptive or oncogenic, it is still symmetric in cancer. This fact 
opens a therapeutic window, a term that pharmacologists reserve to the range of dosages of a drug 
which is effective against a disease (in this case, all cancers) while being acceptably non toxic to 
normal cells. This therapeutic window has actually already been exploited, since long time. Among 
the most widespread treatments for cancers of various type is a chemotherapy consisting of so-
called antimetabolites. These agents are analogs to human metabolites and they function by 
interfering with those reactions that use these metabolites as substrate. Gemcitabine, decitabine, and 
fluorouracil are such drugs. And they are all antimetabolites to nucleotides, and specifically 
pyrimidines. Their clinical use against a number of disparate cancers underscores the symmetry of 
nucleotide metabolism in cancer. However, it does not necessarily corroborate the above claim 
about its uniqueness in the landscape of metabolic pathways. Indeed, another prominent class of 
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antimetabolite drugs is represented by anti-folates (like methotrexate). This, in turn, can be 
reconciled to some findings reported by Nilsson and colleagues. In their study, they reported that 
the methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2 gene (MTHFD2) is the most 
frequently overexpressed in cancer and, more in general, so is the related mitochondrial folate 
pathway. Taken together, the direct observations in human tumors of the efficacy of inhibition of 
such (and perhaps only such) metabolic pathways seem to support their symmetric character in 
cancer metabolism. But the fact that cancer can relapse after antimetabolite treatment is also 
indicative that such symmetric regulation is yet circumventable, hence suggesting that the process is 
rather adaptive then oncogenic.  
 
The above studies failed to dissipate my beliefs on the existence of one or more metabolic processes 
that all cancers must reprogram to evolve. Cancer cells are abnormal mutants. They evolve 
essentially through genomic instability (14). Their ever-changing genome exposes them to a high 
chance that their survival fitness will decrease, in other words that evolution will select against their 
existence. This perfect recipe for death can be reconciled with the evidence of cancer only by a 
ruthless application of the modern theory for clonal evolution in cancer. The genetic aberrations 
themselves must simultaneously enable cancer proliferation and survival. These symmetries, as 
well as any other symmetric trait in metabolism, must emerge in connection to the appearance of an 
oncogenic genetic alteration, most likely a mutation. So what are these phenotypic traits? Which 
symmetries are oncogenic? 
 
Answer #2: AraX 
The posed question cannot be readily explored experimentally. It would require triggering a 
mutation in a human cell in a healthy tissue capable of driving the neoplasm and measuring the 
gene expression changes before and after the mutation took place. This should be repeated for a 
sufficient number of driver mutations and in a sufficient number of backgrounds (i.e. tissues), so 
that only changes in common to all scenarios can be deemed symmetric. Experimental models such 
as cancer cell lines or mice models would likely fail to convey a realistic picture, given the role of 
the human microenvironment in the selection of the processes important for cancer evolution 
among those enabled by the mutation. Indeed, as much as a cell can attain a growth advantage by 
means of a mutation also in a Petri dish (one of the historical findings of Howard Temin (108)), it is 
the environment that ultimately selects the mutations conferring the fittest context-dependent 
growth advantage. In this study (Paper II), we proposed to estimate what are the gene expression 
changes attributable to the occurrence of a mutation in a human tumor. Considering the nature of 
the data used in this study, i.e. NGS-derived genomics and transcriptomics of human tumor 
resections, we held all assumptions elaborated to answer the first question in Paper I. In addition, 
the estimates for the gene expression changes were inferred by assuming that the expression level 
observed of a gene can be factorized as the sum of contributions of three distinct features of a 
tumor: the histopathological classification (e.g. its tissue of origin and morphology); the expression 
level of a set of validated transcription factors; and finally the factor of our interest, the presence of 
a mutation in a cancer-associated gene. We retrieved these pieces of information for 1082 tumors, 
encompassing 13 distinct cancer types.  
 
The fundamentals for this study thus fall within the scope of a typical bioinformatics analysis 
known as gene expression analysis, that started off with microarray (109) and is nowadays almost 
exclusively performed using NGS in human systems (110). We adapted gene expression analysis to 
identify the gene expression changes attributable to the presence of a mutation, besides the above-
mentioned factors, and this was achieved by leveraging on two statistical frameworks: generalized 
linear modeling (111) and model selection (112). A first look at the results of the analysis revealed 
that most gene expression occurring in a tumor could be ascribed to histopathology (as exemplified 
by the fact that a principal component analysis (PCA) of the 1082 gene expression profiles cluster 
very well according to the cancer type, Fig. 2-3). This is consistent with what was reported above.  
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Figure 2-3. Principal component analysis of the 1082 primary tumor samples based on their gene expression profile. Samples were 
grouped according to the cancer type. Key: BLCA – Bladder adenocarcinoma, BRCA – Breast carcinoma, COAD – Colon 
adenocarcinoma, GBM – Glioblastoma multiforme, HNSC – Head and neck squamous cell carcinoma, KIRC – Clear cell renal cell 
carcinoma, LGG – Low grade glioma, LUAD – Lung adenocarcinoma, LUSC – Lung squamous cell carcinoma, OV – Ovarian 
carcinoma, READ - Rectum adenocarcinoma, PAAD – Pancreatic adenocarcinoma, UCEC – Uterine corpus endometrial carcinoma. 
 
However, a number of gene expression changes were occurring when a cancer-associated mutation 
was present in the tumor. The number of these changes was particularly significant in the case of 12 
mutations: APC, CASP8, CTNNB1, IDH1, KEAP1, KRAS, NFE2L2, NSD1, PTEN, RB1, STK11, 
and TP53. At this point, we could finally ask the question: which cellular processes are mostly 
affected? And is there any process independently affected by all these 12 mutations? In other 
words: is there any symmetry? 
 
To our surprise, the cellular processes (here identified by GO terms) associated with each mutation 
were quite heterogeneous and barely overlapping. The second surprise was that those processes 
where we observed an overlap showed an unexpected enrichment for two families of processes: 
metabolism and immune system (Fig. 2-4). Not quite the most renowned hallmarks of cancer (see 
Fig. 1-3). Given the prominence of metabolism and our technological expertise in mining this type 
of data in the context of the human metabolic network, we decided to focus on the metabolic genes 
that are regulated in presence of any of these 12 mutations (Fig. 2-5).  
 
Intriguingly, we noticed an area of “high convergence”, where multiple mutations independently 
are associated with the same set of metabolic genes. To figure out the role of this set of genes 
required a combination of network analysis and literature mining. As a result, we curated a network 
of metabolic reactions encoded by a majority of this set of genes. This network revolves around the 
metabolism of arachidonic acid and xenobiotics and it is mediated by the presence of oxygen and 
glutathione as co-factors (Fig. 2-6). We termed this network AraX.  
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Figure 2-4. Mutations converge on the regulation of GO biological processes that relate primarily to metabolic and immune system 
processes. Each colored entry indicates that the GO term (row) is a gene-set statistically enriched with up- (red) or down- (blue) 
regulated genes associated with a mutation (column). GO terms are classified according to the ancestor GO biological process and 
sorted by the significance of the convergence (barplot on the right). 
 
This finding can be viewed as controversial under different aspects. First, it suggests that the origin 
of symmetry in cancer due to the mutations is, in essence, a secondary metabolic process. Neither 
fermentation nor respiration, the processes beyond the Warburg effect, is represented, and so is not 
nucleotide metabolism. Second, it attributes a prominent role to the metabolism of xenobiotics, 
which are endogenous or, perhaps more commonly, exogenous substances toxic to the cell (such as 
drugs), even though these enzymes are generally assumed to be active principally in the liver and 
induced by exposure to the toxic compounds. Note that the samples in this study are not only 
untreated, but did not even undergo neoadjuvant therapy, that is a regimen usually administered 
before the main therapy like surgery. Third, the extent of the regulation of AraX genes by the 
different mutations is heterogenous and often contradictory. For example, NQO1 is up-regulated in 
the presence of mutations of KEAP1, NFE2L2, PTEN, and STK11, but it is down-regulated with 
mutations of CTNBB1 or NSD1.  
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Figure 2-5. The network of associations between cancer mutations and metabolic gene expression reveal a region of high 
convergence. Metabolic genes are sorted counter-clockwise according to the number of links (i.e. the number of mutations that 
independently associate with its regulation). Black entries in the outer circle indicate genes belonging to AraX (introduced later).  
 

Figure 2-6. A literature curated sub-network of reactions that revolves around arachidonic acid and xenobiotic metabolism (AraX) 
shows convergence by multiple cancer mutations. The boxes next to each gene indicate which mutations are associated with its 
regulation. 
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It is therefore hard to delineate a hypothesis about the function of AraX regulation, if not to 
conclude that a general deregulation is symmetric in cancer, because independently associated with 
12 cancer mutations. This conclusion is powerful because we could not find a better enrichment for 
the symmetry across 674 canonical pathways listed by Reactome ((113), Fig. 2-7), which also 
includes signaling pathways. 

 
Figure 2-7. Overrepresentation of AraX compared to Reactome pathways by genes associated with a mutation. Each bar indicates 
the odds ratio for the corresponding mutation. The top five ranked pathways are sorted according to mean overrepresentation (grey 
bar), where the error bars span the 95% bootstrap confidence interval. 
 
However, this finding must be validated. We reasoned that if AraX deregulation is symmetric in 
cancer then the extent of its deregulation must ultimately reflect tumor evolution. Hence, bearing a 
tumor with a highly deregulated AraX should mark lower chances of survival. When we stratified 
783 patients according to the level of AraX deregulation compared to the tissue where the tumor 
originated, we observed that patients with high deregulation scores have far worse prognosis that 
those with low deregulation scores (Fig. 2-8). The importance of AraX over other metabolic 
pathways is demonstrated by the fact that no other pathways if deregulated predict survival better 
than AraX. This strong association with survival is suggestive that AraX is indeed symmetric in 
cancer because its deregulation seems to mark an evolutionary process driven by known cancer 
mutations. 

Figure 2-8. Kaplan-Meier survival plots for the subset of 783 samples, for which reference normal samples were available classified 
with very high (black line), high (dark blue) or low (light blue) deregulation in the AraX pathway. 
 
The question is: why AraX? I am not sure if I have satisfactory answers at this point. We discussed 
at length in Paper II that the importance of AraX in cancer may reside in the functions of its 
individual components, given the associations found, for example, between xenobiotic-
metabolizing enzymes, genotoxicity (i.e. DNA damage), and cancer initiation (114). Undeniably, 
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the presage of immune system infiltration is hinted by many enzymes in AraX. For example, the 
involvement of arachidonic acid-derived metabolites suggest active pro-tumorigenic inflammation 
(115). This fact nicely reconciles the major regulation of immune system processes that we 
observed in correlation with the 12 cancer mutations (refer to Fig. 2-4).  
 
But is this the end of the story, as we know it? Obviously not. The fact that many cancer hallmarks 
were not recovered by means of this study points to the limitations of this approach in discovering 
the symmetry. I believe that our study shed some light on the origin of the symmetry in cancer, but 
it is apparent that we are just scratching the surface. I will frame the symmetry as we know it within 
the current view of cancer in Chapter IV. 
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Chapter III: Translational medicine – The case of kidney cancer 
The kidney is the dump of the human body. It contributes to the regulation of whole-body 
homeostasis primarily by excreting waste products of metabolism through filtration, which occurs 
in functional units called nephrons. The portion of the nephrons that first communicates with the 
blood to be filtrated is the proximal tubule, composed of epithelial cells as shown in Fig. 3-1. 

Figure 3-1. Microscopy of kidney tissue showing tubules. One tubule is highlighted to show epithelial cells (light grey), cell nuclei 
(grey dots) and the tubule lumen (dark center). 
 
This introduction serves one point: these cells give origin to the most common form of kidney 
cancer, renal cell carcinomas (RCC) (116). Why focusing on RCC among all cancer types for which 
we sought symmetries? One reason. Remember that a subset of samples that clustered away from 
any other tumor sample when we searched for similarities in the expression of metabolic genes 
(Fig. 2-1)? They all happened to be RCCs.  
Why? 
 
Answer #3: Loss of heterozygosity in metabolic genes 
Observe Figure 3-2. Each dot in the PCA is a tumor sample, placed in the two Cartesian coordinates 
according to the similarity in the change of expression from the adjacent normal tissue. Note also 
that not all genes were used in the PCA, but only metabolic genes and, among these, only those that 
we deemed commonly regulated among multiple cancer types. So if all tumor samples were 
regulating these genes with the same expression change, i.e. a symmetric change, then they would 
cluster altogether. And indeed most do, the dark grey samples, possibly in the regulation of 
nucleotide metabolism. But the RCCs do not. The direction of the regulation for these metabolic 
genes is opposite. 
 
To be exact, these RCCs have a particular phenotype. They accumulate large amount of glycogen 
and lipids, so to appear clear under the microscope. Hence, they are called clear cell renal cell 
carcinomas, ccRCC. It is not surprising that our collaborator in Malmö, a molecular pathologist 
active in the treatment of ccRCC, told me once “we (physicians) are all very well aware of the 
outstanding metabolism of ccRCC”. But he also agreed that there was no evidence for this 
awareness. And I would add that none could predict this cancer type to be the sole one to deviate its 
metabolic expression profile. 
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Figure 3-2. Similarity analysis of metabolic gene expression profiles for cancer and tumor-adjacent normal samples. Principal 
component analysis of log2 gene expression fold-change vs. matched tumor-adjacent normal samples for ccRCC (light grey, left) and 
other cancer type samples (dark grey, right). 
 
How is ccRCC metabolism different then? We reconstructed a ccRCC metabolic network in the 
form of GEM by using protein evidence for each reaction-encoding gene in the generic human 
GEM. Then we compared the ccRCC network to four other cancer type networks and simply 
looked to what was in common and what was not at the gene level (Fig. 3-3). One figure stood out 
clearly. If one looked at the number of metabolic genes that were part of all networks except to a 
given cancer type network (say bladder carcinoma, BL), then this number ranges 17 – 82 genes (for 
the example of BL, this number was 33 genes). In the case of ccRCC, the number of such metabolic 
genes was 169. Compared to the GEM of the normal kidney, 159 out of these 169 genes were part 
of the normal kidney metabolic network. In other words, ccRCC appears to lose functions for 159 
genes that are otherwise part of the kidney metabolism and part of the metabolic network of four 
unrelated cancer types. We verified that these genes mostly belonged to the metabolism of 
glycerophospholipids, oxidative phosphorylation, inositol metabolism and, strikingly, nucleotide 
metabolism.  
 
The symmetry breaks with ccRCC. 
 
We ascribed the uniqueness of ccRCC metabolic networks to recurrent copy number alterations in 
the chromosome 3p (Fig. 3-4). Here is also located the most commonly mutated tumor suppressor 
gene in ccRCC, the von Hippel-Lindau (VHL) tumor suppressor gene (117). We observed that 14 
metabolic genes displayed a simultaneous loss of heterozygosity, transcriptional down-regulation 
and decrease in protein staining in ccRCC compared to the normal kidney. Among these, ABHD5, 
CHDH, GPD1L, IMPDH2, and PDHB are located within 3p14.3 and 3p22.3, a region that showed 
significant decrease in gene copy number in the range of 75% - 81% of samples. Remarkably, these 
deletions explained many defects previously unveiled in ccRCC metabolic regulation: ABHD5 and 
GPD1L are involved in glycerophospholipid metabolism; CHDH is the first step in choline-
dependent one-carbon metabolism; PDHB commits pyruvate in the TCA cycle and hence regulates 
oxidative phosphorylation; and IMPDH2 is a key step in purine biosynthesis. 
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Figure 3-3. Venn diagram for the metabolic genes present in the ccRCC-specific GEM compared to other reconstructed GEMs 
(other cancer-type GEMs, left, kidney cell in tubules GEM, right). Metabolic genes absent in ccRCC-specific GEM but present both 
in the kidney cell in tubules GEM and other cancer type GEMs were used to enrich canonical pathways. Key as Fig. 2-3. 
 

 
 
Figure 3-4. An overview of the metabolic features unique to ccRCC in the landscape of cancer metabolic regulation. The figure 
shows reporter pathways (represented by edges) and metabolites (represented by nodes) transcriptionally regulated only in ccRCC 
vs. matched tumor-adjacent normal tissue; and sub-networks (represented by rectangles) that feature lack of gene redundancy only in 
ccRCC metabolic network. The mechanisms that contribute to this metabolic phenotype are summarized. First, loss of VHL represses 
expression of metabolic genes in alanine, aspartate, glutamate, and branched-chain amino acids metabolism. Second, potential 
activation of STAT1 up-regulates redundant genes in nucleotide biosynthesis and inositol metabolism. Third, loss of heterozygosity in 
metabolic genes adjacent to VHL affect several pathways previously identified as down-regulated or deficient only in ccRCC 
(represented by double bar). 
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Our results suggested that genetic alterations linked to VHL loss, a mutational event remarkably 
exclusive to ccRCC, shape a unique metabolic network in this disease. This may partially explain 
the symmetry break: there occurs an exceptional genetic event such as loss of VHL to determine a 
different flavor of metabolic reprogramming.  
 
The here-proposed model of metabolic reprogramming in ccRCC remains to be validated. 
However, it opened some exciting avenues for treatment tailored to ccRCC. For example, does the 
fact that ccRCC features a uniquely compromised metabolic network expose it to disruption, 
without affecting the normal kidney or other human cells? 
 
Answer #4: Five liabilities induced by metabolism 
 
The above question requires exploring the limits of the metabolic network of ccRCC. This 
collection of metabolic reactions indeed defines the potential use of nutrients to fuel production of 
energy-rich metabolites (like ATP) and macromolecules essential for cell growth. The network 
imposes stoichiometric constraints on this potential: if one believes in the law of mass conservation, 
than a reaction in the network defines exactly how much product can be synthesized per unit of 
substrate simply due to stoichiometry. For example, hexokinases are enzymes in the network that 
mediate the conversion of glucose to glucose-6-phosphate (Fig. 1-6A). This reaction has a 1:1 
stoichiometry, i.e. each molecule of glucose yield exactly one molecule of glucose-6-phosphate. 
The quest for the limits of a metabolic network essentially reduces to selecting a metabolic function 
of interest (e.g. a product, like glucose-6-phosphate or, more interestingly, a unit of biomass; a 
process, like ATP production) and verifying which stoichiometric constraints exerted by the 
network impede the fulfillment of such metabolic function of interest. If our interest is production 
of glucose-6-phosphate, the limits of the metabolic network are (trivially) the import of glucose and 
the availability of hexokinases.  
 
More complicated metabolic functions, like biomass production, require a dedicated computational 
framework. There are way too many reactions that lead to the fulfillment of complicated metabolic 
functions. The metabolic network of a generic human cell accounts for over 8,000 reactions, 
according to the latest human GEM, HMR2. These reactions have different stoichiometry, different 
requirements of substrates and co-factors, different thermodynamically favored directions. 
However, many of them contribute to the production of biomass, either directly by synthesizing 
biomass precursors (e.g. membrane lipids) or indirectly by fueling energy production (e.g. the TCA 
cycle). A common computational framework when dealing with “complete” metabolic network is 
called flux balance analysis (FBA, previously introduced in Chapter I). FBA can scan all the 
different routes emerging from the metabolic network that fulfill a metabolic function of interest. It 
operates under the assumptions of mass-conservation and steady state, i.e. a newly synthesized unit 
of product must be consumed at the same rate so that it does not accumulate over time. This 
framework also requires defining which nutrients are available to the network and it assumes for 
some reaction a thermodynamically privileged direction.  
 
In the view of our study (Paper III), exploring the limits of the metabolic network of ccRCC using 
FBA translated into selecting biomass production as the metabolic function of interest and 
manipulating the network to identify which reactions impede the fulfillment of this function. If our 
hypothesis was correct, that is the ccRCC network is severely compromised, then manipulating the 
network should have dramatic effect on biomass production. A simple network manipulation is a 
single-gene deletion. In FBA, a single-gene deletion is simulated by eliminating from the network 
the reaction(s) encoded by that gene. Hence, using this approach, we could scan each single-gene 
deletion and determine if there was any gene that ablated biomass production simply due to 
interference with the ccRCC network. In other words, we could explore the metabolic liabilities 
induced by the network of ccRCC. 
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Despite the fact that this strategy has found some utility in the simulation of microbial metabolism 
(118), the accuracy of this method in human cancer cells has never been really tested. Hence, we 
sought to benchmark our predictions with large-scale experiments of gene essentiality to gauge 
FBA accuracy. These experiments employed a library of siRNAs, targeting around 200 genes that 
participate in the human metabolic network. We compared the predictions of FBA simulations in 
silico to the experimental observations in vivo for two cancer types, ccRCC and prostate 
adenocarcinoma, under a number of different set of parameters (nutrients available, use of measured 
fluxes to constraint the rate of import or secretion of nutrients).  
 
Unfortunately, the accuracy of FBA was quite limited (Table 3-1).  
 
Table 3-1. Statistical measure of accuracy of the flux balance analysis predictions on gene essentiality compared to in vitro results 
for different set of constraints, media, and cancer types. Key: TP – true positive (essential in silico and in vitro); FN – false negative 
(non essential in silico, essential in vitro); FP – false positive (essential in silico, non essential in vitro); TN – true negative (non 
essential in silico, non essential in vitro); MCC – Matthews Correlation Coefficient. 

Cancer type FBA 
constraints 

Medium TP FN FP TN Fisher 
exact test 
p-value 

MCC 

Clear cell renal cell 
carcinoma 

Topology FBS 2 18 1 135 0.043 0.226 

HAM 5 15 12 124 0.046 0.174 
Topology + 
Exchange fluxes 

FBS 6 14 11 125 0.010 0.235 
HAM 6 14 15 121 0.032 0.186 

Prostate adenocarcinoma Topology FBS 2 12 12 186 0.233 0.082 

HAM 2 12 14 184 0.285 0.068 
Topology + 
Exchange fluxes 

FBS 2 12 19 179 0.635 0.039 
HAM 2 12 27 171 1 0.005 

 
At the same time, it revealed that at least in the case of ccRCC the predictions were statistically 
meaningful. But the numbers were small, the accuracy was limited, and this fostered my skepticism 
about the utility of FBA. One cannot deny the data though. We confirmed that the statistical 
significance of FBA predictions in ccRCC were robust with respect to all parameters. The only way 
to clarify whether these predictions could still be a product of chance (in spite of the low Fisher’s 
statistics, Table 3-1) was to survey the ccRCC metabolic network at the sites where essential genes 
for growth were claimed. In other words, what is so unique in the network that renders ccRCC (and 
only ccRCC) liable to disruption?  
 
We ran some subsequent simulations, which convinced me that FBA might have correctly 
identified several genes essential in vitro (Fig. 3-5). For example, AGPAT6 silencing was associated 
with substantial cell death in 4 of 5 ccRCC cell lines and identified as essential by FBA. When we 
explored the network around the acylation of glycerol-3-phosphate to 1-acyl-glycerol-3-phosphate, 
which is encoded by AGPAT6 and 3 additional genes, we noticed that the only expressed protein in 
ccRCC, according to the Human Protein Atlas (119), is AGPAT6 (Fig. 3-5A). Since this reaction is 
crucial for biosynthesis of glycerolipids needed for biomass growth, ablation of the only available 
isoenzyme would unavoidably lead to cell death. Intriguingly, when we knocked down three of 
these essential genes (RRM2B, GCLC, and GSS, shown in Figure 3-5) in a normal kidney epithelial 
cell line, where ccRCC is thought to originate, the viability of normal cells was not significantly 
affected (Fig. 3-6).  
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Figure 3-5. In silico elucidation of the mechanisms of essentiality for the five genes selectively essential in ccRCC. A) AGPAT6 is 
essential only in ccRCC because of loss of gene redundancy. In ccRCC, the repression of AGPAT9, GPAT2, and GPAM in 
glycerolipid metabolism renders the pathway solely dependent on AGPAT6 to produce essential lipids for biomass. B) GALT is 
selectively essential because of loss of pathway redundancy in ccRCC. Low or no expression of UGP2 forces the flux through GALT 
to produce glycogen in ccRCC. C) RRM2B, GCLC and GSS are essential only in ccRCC because of specific metabolic requirements 
of ccRCC cells that activate the corresponding pathway (flux rates are shown in fmol cell-1 h-1). Top: the measured secretion rate of 
3-ureidopropionate in ccRCC cell lines is not matched by the observed uptake rate of its direct precursors, uracil and deoxyuridine. 
This forces a flux active in the catabolism of UDP (part of the pyrimidine degradation pathway) to compensate for the observed 3-
ureidopropionate secretion rate. One of the pathway steps is uniquely catalyzed by RRM2B, given that the other genes associated to 
this reaction (RRM1 and RRM2) are not expressed in ccRCC. Bottom: ccRCC cell lines secrete glutamate at a high rate and the only 
flux distribution that fits glutamate secretion in the ccRCC metabolic network requires the cleavage of extracellular glutathione 
(GSH). Extracellular GSH is in turn derived from de novo GSH intracellular synthesis that is catalyzed by GSS and GCLC. 
Noteworthy, the reduction of reactive oxygen species like H2O2 by GSH is a metabolic function preserved in the predicted flux 
distribution. For each protein, the grey shading represents the fraction of ccRCC samples in which the protein is expressed according 
to the Human Protein Atlas. 
 
Taken together, it seems that ccRCC shapes the metabolic network uniquely, and it is vulnerable to 
disruption in at least 5 different sites. These liabilities are noteworthy because they specifically arise 
from the emergent stoichiometric constraints of the ccRCC network and cannot be attributed either 
to functions present exclusively in the kidney nor to metabolic requirements of proliferating cells, 
as suggested by the knock-down experiments in the normal kidney epithelial cell line. 
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Figure 3-6. Toxicity for GCLC, GSS, RRM2B knockouts in a normal kidney epithelial cell line, HK-2. Cells were transfected with 
siRNA targeting RRM2B, GCLC, and GSS and a non-targeting scrambled siRNA, OTP, was used as negative control. Each bar 
represents the mean cell number reduction relative to control together with the 95% highest density interval of two experiments 
performed in triplicate. 
 
FBA is an approach essentially limited to characterizing the uniqueness of the topological 
properties of ccRCC metabolic network. However our first key observation of the uniqueness of 
ccRCC metabolism was at the level of gene expression regulation. In Paper I, we sought to decipher 
why ccRCC is unique, but can we provide a better understanding about which expression changes 
are unique? 
 
Answer #5: Shine on your crazy glycosaminoglycans 
 
I refer, one more time, to Figure 3-1. The gene expression in ccRCC metabolism showed some 
unique patterns, which we could not reconcile with the fact that ccRCC arise in the kidney, nor with 
the observed higher infiltration of stromal and immune system cells (120). The expression changes 
were vast, and we mainly focused on characterizing them in terms of metabolic pathways (refer to 
Fig. 2-2). In this follow-up study (Paper IV), we sought to obtain additional information. First of 
all, we retrieved more data, passing from 65 pairs of ccRCC-normal kidney samples to 481 ccRCC 
vs. 74 tumor-adjacent kidney samples. Second, we explored different algorithms. One way to mine 
metabolism is represented by so-called reporter metabolites (121). This approach abstracts the need 
to arbitrarily define the gene content of a pathway. Instead, it lists all the genes that “surround” a 
metabolite, by encoding for the reactions that either produce or consume it. Then, it calculates a 
score for the metabolite, which condenses the statistical confidence that the metabolite-associated 
genes changed expression in the condition of interest. This score follows an inverse normal 
distribution, and therefore one can calculate the statistical confidence that the metabolite is 
significant because surrounded by differential regulation of the associated genes. These metabolites 
are called reporter metabolites. Although widely informative, this approach has a drawback: it treats 
metabolites in isolation with each other, therefore the scientist cannot understand whether two 
reporter metabolites are closely connected in the metabolic network unless he has prior knowledge 
about them. One may know that succinate is closely related to fumarate, but maybe not that it is 
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also related to γ-aminobutyrate (better known as the neurotransmitter GABA).  (They are actually 
just two reactions away.) This led to the development of the Kiwi algorithm (Paper V), whose scope 
was precisely to fish the sub-network of connected metabolites that are relevant in a condition of 
interest. The algorithm can be applied broadly to any biological network in which the user has 
computed a statistic for each node. This statistic is in turn correlated to the confidence that the node 
is relevant in a certain condition (122). For our case, we limited our analysis to metabolites in the 
human metabolic network represented in HMR2. 
 
Running Kiwi in the comparison ccRCC vs. normal kidney recovered expression changes in 
metabolic genes already unveiled by our previous study (120). However, we also observed the 
emergence of an unanticipated sub-network of metabolites (Fig. 3-7A). This component comprised 
precursors of chondroitin sulfate (CS) that were connected to precursors of heparan sulfate (HS). 
The former were distinctively characterized by up-regulation of the associated genes, the latter by 
down-regulation. Further manual inspection of this part of human metabolism revealed that these 
metabolites represent two branches of a larger metabolic pathway known as glycosaminoglycan 
(GAG) biosynthesis (Fig. 3-7B). As pointed out earlier, this pathway displayed an astonishingly 
coordinated regulation in ccRCC compared to the normal kidney. We confirmed the pattern of gene 
expression changes in two independent published datasets, which also confronted ccRCC vs. 
normal kidney samples (123, 124) (Fig. 3-7C). Moreover, the coordinated character of this 
regulation in ccRCC was not observed in six other common epithelial cancer types (Fig. 3-7D). 
Taken together, this was suggestive that a unique metabolic event is taking place during the 
progression of ccRCC in the kidney, which entails a coordinated alteration of GAG biosynthesis.  
 
The exceptionality of this metabolic event in ccRCC called for further inspection. What if these 
gene expression alterations were actually reflected by changes in GAG levels and/or composition in 
ccRCC? The unique character of this regulation may imply that specific alterations in GAG levels 
might occur in ccRCC. Speculatively, these unique alterations might be even appreciated in kidney-
proximal fluids. Prompted by this, we decided to analyze GAGs in the plasma and urine of subjects 
with metastatic ccRCC (mccRCC) as opposed to healthy individuals. We selected metastatic 
patients because we thought that at this stage we would have better chances to detect changes. This 
choice stemmed from the consideration that GAGs have been previously implicated in metastatic 
processes when located at the extracellular level (125, 126). Hence, our initial cohort included 34 
patients with mccRCC plus 16 healthy individuals. In 21 of 34 mccRCC patients, only plasma 
samples were collected. CS and HS concentration and their disaccharide composition were 
quantified in the samples using liquid chromatography with on-line electrospray ionization mass 
spectrometry (127, 128). In total, 18 independent GAG properties were measured in every fluid 
sample (note that the GAG charge is the sum of all sulfated disaccharide fractions). The collection 
of all these data points defines a GAG profile. In line with our speculation, we observed marked 
differences in both the plasma and urine GAG profile of subjects with mccRCC (Fig. 3-8). 
 
Some GAG properties were so significantly altered that we considered the possibility of designing 
an unprecedented diagnostic biomarker for mccRCC. It should be noticed that no such biomarker 
has entered the clinical routine as for 2015 (129). We utilized a method called penalized Lasso 
(130) to pull out the most relevant GAG properties in the comparison mccRCC vs. healthy. Lasso 
works as a regression for a certain dependent variable, in our case the clinical outcome (mccRCC or 
healthy, a binary value), on defined independent variable, in our case the GAG profile either in the 
plasma or in the urine. The regression is then penalized to return only those independent variables 
that are predictive of the dependent variable, i.e. the GAG properties most predictive of mccRCC. 
This method features an internal cross-validation to avoid over-fitting and returns robust predictors. 
Then, the coefficients of the regression were used to develop a formula designed to yield higher 
values in case of mccRCC. 
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Figure 3-7. Coordinated regulation of glycosaminoglycan biosynthesis in ccRCC vs. normal kidney. A) Genome-scale metabolic 
modeling using Kiwi reveals a coordinated transcriptional regulation in a subnetwork of metabolites belonging to the chondroitin 
sulfate and heparin sulfate biosynthetic pathway. The node color indicates the general direction of regulation of the genes associated 
with the metabolite (red – up-regulation; blue – down-regulation). B) Pathway-view of glycosaminoglycan biosynthesis in ccRCC. 
Each box shows the enzyme(s) carrying out a given reaction in the pathway. The color represents the log10 fold-change in ccRCC vs. 
normal for the enzyme-coding gene, while the symbol next to each box reports the significance for the corresponding gene regulation 
(in terms of false discovery rate). The pathway has been drawn according to KEGG gene associations (Note that genes related to 
dermatan sulfate biosynthesis or sulfation at C3 in heparan sulfate are not shown, the latter event being rarely observed (131)). Solid 
arrows indicate addition of a molecule, dashed lines indicate conversion of a molecule, and dotted lines indicate the final 
disaccharide composition up to that point. C) Correlation of gene expression log2 fold-changes in the glycosaminoglycan 
biosynthesis pathway between TCGA samples (y-axis) and two independent studies (GSE36986 and GSE14762, (123, 124)). D) 
Gene expression log2 fold-changes in the glycosaminoglycan biosynthesis pathway in ccRCC as opposed to other cancers vs. 
matched normal tissues. Key: HNSC – Head and neck squamous cell carcinoma; BRCA – Breast invasive carcinoma; COAD – 
Colon adenocarcinoma; LUAD – Lung adenocarcinoma; LUSC – Lung squamous cell carcinoma; UCEC – Uterine corpus 
endometrial carcinoma. 
 
We developed three formulas, based on either the GAG profile in the plasma, or in the urine, or 
both: 

Plasma!score = 6!!!" + !!!"!
3
10

4!!!"
6!!!" + [!"!!"]

 

Urine!score = !"6!!!" + 60 ∙ Charge!!"
4!!!"  

Combined!score = mean(Plasma!score,Urine!score) 
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where terms in brackets represent the fraction of the disaccharide for the corresponding GAG (the 
abbreviations describe different sulfation patterns for CS and HS as per Fig. 18B), !!!"! is the total 
concentration of CS (in mg/mL) and Charge!!" is the total fraction of sulfated disaccharides of HS. 
 

 
Figure 3-8. The glycosaminoglycan plasma and urine profile of mccRCC patients is markedly distinct than healthy individuals. The 
glycosaminoglycan profile of mccRCC patients (dark grey boxplots) and healthy individuals (light grey boxplots) in the plasma (top) 
and urine (bottom). Each profile comprises 18 independent measurements of GAGs (9 related to chondroitin sulfate, CS, and 9 
related to heparan sulfate, HS), which refer to the total concentration and the disaccharide composition. 
 
Not only were all three scores substantially higher in subjects with mccRCC compared to healthy 
individuals (Fig. 3-9A), but also a classification based on these scores had an area-under-curve 
ranging from 0.966 for the urine score to 1 for the plasma and combined scores, i.e. perfect 
classification (Fig. 3-9B). In other words, it seems possible to profile GAGs in subjects’ plasma and 
urine and classify a subject as either healthy or with mccRCC. 
 
We decided to validate whether these scores were inflated to achieve perfect separation by means of 
the method utilized to design the formulas (even though I had already noted that the GAG 
properties were inherently selected by Lasso to be robust predictors). We gathered a second 
validation cohort, blindly and independent from the first cohort, consisting of 18 patients with 
mccRCC and 9 healthy individuals. For 11 of 18 mccRCC patients, only plasma samples were 
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obtained. To our delight, the performance of the scores was even higher in the validation cohort 
(Fig. 3-9C and D). 
 

Figure 3-9.  The glycosaminoglycan profile can be summarized in three scores (based on measurements in the plasma, urine, or 
both) that can accurately predict occurrence of mccRCC. A) Plasma, urine, and combined scores in mccRCC patients (dark grey 
boxplots) and healthy individuals (light grey boxplots) belonging to the discovery cohort (34 samples vs. 17, respectively). B) 
Receiver-operating-characteristic (ROC) curves in the classification of samples of the discovery cohort as either mccRCC or healthy 
based on the combined, plasma, and urine scores. For each marker, an optimal cut-off scores that maximizes the negative predictive 
value is indicated. C) Plasma, urine, and combined scores in mccRCC patients (dark grey boxplots) and healthy individuals (light 
grey boxplots) belonging to the validation cohort (18 samples vs. 9, respectively). D) ROC curves in the classification of samples of 
the validation cohort as either mccRCC or healthy based on the combined, plasma, and urine scores.  
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However, a truly diagnostic marker would return a decreased score in the case of patients 
previously diagnosed with mccRCC but currently declared as disease-free. To test this possibility, 
we analyzed the GAG profile of 8 such subjects. Reassuringly, we observed a decreasing trend in 
all scores, particularly pronounced for the plasma score (Fig. 3-10). Using our initial discovery 
cohort, we selected a score cut-off that maximized the negative predictive value, so that our test 
could be indicative of healthy status if the score in the subject is below the cut-off. Such test would 
be useful to monitor mccRCC recurrence during follow-up of patients like those represented in this 
last cohort of 8 subjects. In our experiment, the plasma test would correctly classify 7 of 8 subjects 
as healthy. 

 
Figure 3-10. Combined, plasma, and urine scores in subjects previously diagnosed with mccRCC but with no evidence of disease at 
the time of sampling. The horizontal lines represent the optimal cut-off scores at which a subject is classified as either mccRCC or 
healthy according to maximum negative predictive value. 
 
In Paper IV, we also performed analysis of covariance on some confounding factors, such as age, 
BMI, dietary intake or treatment regimen. We showed that the clinical outcome is always best 
predicted by the scores, independent of the confounding factors. Taken together, these results are 
very promising. They suggest that a unique metabolic event in mccRCC may be translated to an 
actual accessible diagnostic biomarker for the disease. In the future, it might be possible to establish 
these markers for a diverse range of diagnostic tools in the clinical management of ccRCC, with 
considerable benefits for general healthcare.  
 
I would like to conclude this section, and with it the chapter, with one speculative note on the 
symmetry that I learnt from the case of ccRCC. As discussed in Paper IV and corroborated by our 
data, the plasma of healthy individuals has a stable GAG composition, typically not affected by any 
tissue (refer to Fig. 3-8). However, there is an obvious systemic alteration of GAG composition 
concomitant to metastatic ccRCC. The resulting GAG profile is remarkably similar to the GAG 
composition of lymphocytes (132). This led us to speculate that the infiltration of the immune 
system in mccRCC could lie behind the observed coordinated regulation of GAG biosynthesis. 
This, in turn, was probably the most relevant and exclusive metabolic event in ccRCC at the system 
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level. In the same way, AraX was the most relevant and exclusive metabolic event induced by 
oncogenic mutation at the system level. It seems to me that both events entail a prominent role of 
the immune system. What if the only oncogenic aspect of metabolic reprogramming that any cancer 
must acquire is a beneficial engagement of the immune system? Let me rephrase this. What if the 
only metabolic trait symmetric in cancer is not the Warburg effect, to name one, but rather a 
redistribution of fluxes beneficial to the immune system? 
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Chapter IV: The future of cancer care 
My last four years or so of research are now turning to a conclusion in what I would likely deem a 
bitter end. This bitterness arises from the nagging feeling that I have missed something crucially 
important in the conceptualization of the origin of symmetry in cancer. Let me be more specific. I 
believe that the premises beyond the origin of symmetry in cancer that I described in Chapter I are 
sound: cancer is the collection of diseases defined by the acquisition of malignant phenotypic traits 
like abnormal proliferation and convincing evidence shows how this symmetry is acquired by 
disparate cancers via converging evolutionary trajectories. However, in my attempt to elucidate 
whether reprogramming of metabolism figures among these symmetric phenotypic traits, I 
stumbled upon results that rather argue the opposite. This is puzzling. Of course, I acknowledge the 
multifaceted appearance of cancer metabolism in virtue of the fact that metabolism is meant to be 
plastic and adaptive. Yet, I regard it plausible that the transformation should lead to a symmetric 
reprogramming of metabolism, if anything to support the life of a mutant proliferating cell. Looking 
back at my data and methods, I may certainly detect flaws or assumptions that can be tinkered, but I 
doubt that this would largely affect the results, and with that the general interpretations that my 
collaborators and I drew. These interpretations, as mentioned before, collectively seem to argue 
against the symmetry of metabolic reprogramming. This is the bitter end. Now I question: is this 
true or, as systems biologists, what have we missed? How does this speak for cancer in general and, 
as human beings, how does this affect us in terms of hazard for our health? How does this speak for 
the way we do science? In this last chapter, I will address, or better said conjecture, these questions 
separately.  
  
From here we go sublime 
I have insisted in the introductory section that our results point against the symmetry of metabolic 
reprogramming in cancer. This is perhaps confusing, considering that in Chapter II I first suggested 
that up-regulation of nucleotide metabolism is symmetric and second that deregulation of AraX is 
not only symmetric but also oncogenic. The reason why I am skeptical is twofold. In the case of 
nucleotide metabolism, I have already discussed that this process seems to be symmetric because 
cells are proliferating. In the case of AraX, this result hardly reconciles the accumulated evidence 
from molecular biology studies on cancer metabolism. On the other hand, I would like to refute the 
thesis that molecular biology unfolded a proof of symmetry in the metabolism of cancer cells, as 
contended by some review papers in the field (Paper VI).    
 
The contribution to our understanding on how metabolism is regulated in cancer enabled by 
molecular biology is enormous. With reference to Fig. 1-4, a number of phenotypic traits in 
metabolism were declared symmetric at different times. Nevertheless, we and others (133) 
recognized that even the trait most commonly declared symmetric, aerobic glycolysis, is not 
observed in some cancers. A consensus model that accommodates the limits of the symmetry for 
these phenotypic traits has been constantly challenged by newer discoveries and remains therefore 
elusive (134). I have already stressed that this observation does not preclude the existence of 
symmetry in the reprogramming of cancer metabolism, but it poses a boundary to the breadth of the 
conclusions that can be derived in molecular biology. Systems biology studies like ours sought to 
uncover the origin of symmetry by approximating the definition of phenotypic trait in metabolism. 
This approximation is necessary simply because the current technology either has not enough 
resolution to precisely interrogate a phenotypic trait or because it is not sufficiently scalable to 
interrogate the phenotype at the systems level. We stratified these early studies into five levels of 
approximation. A first level of approximation is to define a trait by the presence of genetic or 
epigenetic alterations in its corresponding metabolic pathway. Ciriello et al. condensed these 
alterations across 3,299 tumor samples from 12 tumor types into 31 oncogenic signatures (135). 
None of these signatures were found to specifically enrich metabolic pathways or processes, 
however, all signatures collectively encompassed 5 signaling pathways known to control metabolic 
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reprogramming. A second level of approximation is adopted in studies like ours, such as Hu et al. 
(101) and Nilsson et al. (103), in which a trait is defined by the expression level of the genes 
belonging to its corresponding metabolic pathway. As mentioned earlier, the consensus between 
three independent studies is that metabolic reprogramming in a tumor appears to be limited to the 
up-regulation of nucleotide metabolism. A third level of approximation defines a trait by the 
expression of sufficiently connected components with the metabolic network, like metabolites and 
reactions, rather than relying on canonical and arbitrary definition of metabolic processes. In this 
fashion, two studies by Ågren et al. (136) and Wang et al. (137) independently showed that cancers 
are symmetric in the formation of reaction sub-networks that revolve around the metabolism of 
eicosanoids. A fourth level of approximation defines a trait by the abundance of related metabolites, 
which are informative of the metabolic state of that trait. A global view on the systems traits can be 
provided by untargeted metabolomics (138), but as for today no study has simultaneously addressed 
multiple cancer types in a tumor vs. healthy control comparison. However, Patel and Ahmed 
recently reviewed a progresses in individual cancer types spanning 12 tissues (139) and ascribed 
recurrent, but by no means symmetric, perturbations in the level of metabolites in glycolysis, TCA 
cycle, choline metabolism, and fatty acid metabolism. Finally, a fifth level of approximation defines 
a trait by the flux through sufficiently connected components of the metabolic network. This 
ultimately represents the quintessential experiment to gauge metabolic reprogramming, but the only 
two systems biology studies in this sense are severely limited by the scalability of the technology. 
But still Yuneva et al. (140) and Fan et al. (141) observed that reprogramming of central carbon 
metabolism is not symmetric, in that the flux redistribution induced by mutations could not be 
purely ascribable to cancer regardless of genetic and/or micro-environmental heterogeneity. 
 
So are there any symmetries? Boldly, one could argue that regulation of nucleotide and eicosanoid 
metabolism was alternatively deemed symmetric in some of the above-mentioned systems biology 
studies. Nevertheless, the fact that this was not consistently observed may induce the reader to 
refute it with same argument according to which we would not dare declaring aerobic glycolysis 
symmetric. In fact, this argument does not apply yet. Contrary to aerobic glycolysis where 
experiments provided solid demonstrations of its absence in certain tumor types, no study has 
explicitly proved that altered regulation of nucleotide and eicosanoid metabolism is not symmetric. 
Even in our study (120), in which we differentiated ccRCC from all other cancer types because it 
does not up-regulate nucleotide metabolism, we still reported a mixed regulation perhaps meant to 
compensate the defects in the network introduced by its outstanding genetic make-up. So, until 
convincing dismissal, these two metabolic pathways may still constitute the origin of the notorious 
symmetry in the metabolism of cancer. However, I conjecture that this is not so interesting. I have 
already speculated at length why I do not regard reprogramming of nucleotide metabolism central 
to the evolution of cancer. And in the case of eicosanoids, the only study that has so far attributed to 
their deregulation an oncogenic character indispensable to any cancer was ours, in which 
eicosanoids are featured in the AraX pathway (Paper II). There are numerous proofs that 
eicosanoids can function to promote cancer progression (115), and there exist even anti-tumorigenic 
drugs that target their metabolism, like aspirin (yes, aspirin) in colorectal cancer (142-144). These 
proofs do not nor are intended to demonstrate its symmetry. I have not found any study in which the 
cancer phenotype was reverted in a diversity of tumor models by restoring the regulation of the 
eicosanoid pathway, or more generally the AraX pathway. In the absence of data, how can I claim 
that this is probably not so interesting? I offer two explanations. First, I am biased by the fact that 
the wealth of molecular biology studies that I surveyed in the last years rarely reported the 
activation of AraX metabolism as a response to oncogenesis. At the same time, this lack may just 
reflect an inherent bias of the experimentalists in what they regard interesting or trendy in 
metabolism. (Anecdote: a seminal paper in cancer metabolism is the demonstration by Ying et al. 
that oncogenic KRAS primarily acts to redirect central carbon metabolism towards anabolism in 
pancreatic cancer (45). Their focus on metabolism stemmed from the gene expression profiling of 
cells following oncogenic activation of KRAS, which revealed that most overexpressed genes are 
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metabolic. Nevertheless, most of these genes belonged to steroid biosynthesis. It is unclear why the 
authors decided to focus on central carbon metabolism for the rest of their paper.) Thus I give a 
second explanation. The deregulation of eicosanoid metabolism, and in general of AraX, seems not 
to emerge from an active reprogramming induced by the mutations to confer the cells with a 
selective evolutionary advantage, but rather by a passive adaptation to an environment that the 
presence of mutant cells have remodeled. This could still qualify as an oncogenic process, because 
it requires the presence of a mutant population in an otherwise physiologically normal environment. 
I should specify that when I talk about remodeling of the environment I primarily refer to the 
infiltration of the immune system, in other words inflammation. If this hypothesis is correct, cancer 
cells do not require reprogramming AraX at all. However, they will always respond to 
inflammation by altering the same pathway (i.e. AraX). Maybe, as I speculated at the end of the 
previous chapter, the oncogenic aspect of metabolic reprogramming in cancer is simply to be at the 
service of the immune system. 
 
Or are we missing something? One could discard the whole argumentation above and point to the 
fact that the way we dealt with the quest for symmetries is out of focus. In support of this, we 
proposed and ranked five major weaknesses that affected these early studies in systems biology: 

1. First and foremost, the phenotype of a tumor is only approximated by its gene expression 
profile. In the end, the central dogma recognizes that the proteins are the ultimate effectors 
for the phenotype of a cell (well, the dogma neglects the outstanding role of small 
molecules in many biological functions). Although recent estimates put transcription on the 
front seat when it comes to controlling protein levels (accounting for ~70% of the variance 
(145)), translation and degradation play a non neglectable role. Even under this 
approximation, proteins exert their function and define a cell phenotype by means of 
interactions within each other and with the environment (75, 146). These interactions 
depend on the availability of certain compounds at a given time, potential modifications of 
protein active sites (or even distant sites) via post-translational modifications, and probably 
a number of processes that we do not fully understand or, more likely, not know at all 
(147). Probably this last point is the most compelling. We rely and attempt to corroborate 
the paradigm introduced by Watson and Crick on molecular biology, the central dogma. 
This imposes tremendous limitations on our ability to describe and interpret a phenotype. 
Most of these results will undoubtedly collapse or necessitate to be revisited in light of the 
future paradigm shift.   

2. The sample size of these studies is still limited, with only thousands of cancer samples 
across tens of cancer types. It is worth reminding that some 15 million new cases of cancer 
are diagnosed every year, classified in over 100 types. Any claim about a symmetric 
property should be framed with these numbers in mind.  

3. Mutations are not the only drivers of cancer evolution. This is not exactly surprising to 
cancer researchers, but I find this fact very fascinating. Two recent studies reported some 
interesting data on this. The first one is about ependymomas. Ependymomas are common 
brain tumors in childhood. In particular, the posterior fossa group A (PFG-A) is a subtype 
of ependymoma that is more common in infants, lethal in most cases. It is hard to conciliate 
the initiation of such cancers with the occurrence of driver mutations, because there is 
realistically no time to accumulate them in infants. Indeed, the authors reported that PFG-A 
ependymomas were genetically bland. However, there was a major difference with the 
other ependymoma subtype, PFG-B: the DNA was drastically methylated in the loci of 
genes that are target of the Polycomb repressive complex 2, which indirectly represses 
expression of differentiation genes. Even without any mechanistic proof, this study is 
suggestive that an entire cancer type could be triggered by specific epigenetic alterations 
and not by mutations (148). The second one is about normal skin. The authors found that 
skin cells display a surprisingly high number of driver mutations, despite being 
physiologically normal. For example, as many as 83 clones per square centimeter of skin 
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positively selected for mutations in NOTCH genes, a gene family causally implicated in 
cancer due to their role in the regulation of stem cell biology. Even though these are aged 
and UV-exposed cells and even considering that the mutation burden is still at the lower 
end for most skin cancers, the fact that normal cells carry so many cancer-causing 
mutations is sufficient to question “what combinations of events are sufficient for 
transformation” (149). 

4. The technology is limiting. This is a fact that will always impinge the spectrum of scientific 
questions that can be legitimately answered. In this case, the advancement in our 
understanding on which and to which extent a gene is expressed is outstanding compared to 
twenty years ago or so. Yet, we still relied on pictures of the transcriptome that are static, 
approximated, and related to a variegated population of human cells.  

5. In close relation with the previous point, these questions can and should be addressed 
experimentally. Once research engineers will provide a scalable and practical technology to 
design the experiments outlined before, the reliance on statistical associations to infer links 
between mutations and phenotypes will appear cumbersome and become obsolete. 

 
A natural question I posed myself is if there is a future for the specific question of symmetry in 
cancer metabolism. I believe that any study that takes in account one or more of the points above as 
part of the experimental design can certainly throw more light on the existence of the symmetry. 
Also, there are two specific research questions that can be addressed immediately to clarify some of 
the concerns I raised here. First, it is conceivable to perform a meta-analysis of the expression 
profile of nucleotide metabolism of cancer cells and physiologically healthy proliferating cells, 
possibly at the resolution of single cells and ideally adjusted by tissue of origin. Second, one could 
envision “normalizing” the expression of AraX using small molecules in a number of tumor models 
with the aim of first validating whether tumor evolution is so halted and second estimate the role of 
inflammation. There are some hurdles in this experiment, such as how to “normalize” the 
expression of a pathway and which are good tumor models (with particular consideration to the 
special nature of human immune system). However, I maintain that the reach of the scientific 
question is worth the time investment. 
 
Yesterday was dramatic, today is ok 
I pay tribute to the beginning of my thesis by attempting to communicate how scientific research 
contributed to make cancer a less frightening disease. My obligate premise is that I still would not 
want to be diagnosed with any form of cancer, but this goes along with a long list of bad diseases. I 
think that, when talking about cancer, people care about only one thing: a cure. This topic is way 
too vast to be even briefly elaborated and, also, I lack sufficient expertise on the matter. I will focus 
on two aspects about curing cancer: how research shaped a new perspective on the cure of cancer 
and the role of systems biology. 
 
Precision or personalized medicine is possibly the hottest trend in clinical cancer research. It stems 
from the observation of the daunting complexity of cancer. The idea beyond precision medicine is 
to target the specific molecular features characterizing a patient’s tumor, and these are exquisitely 
acquired by the unique genetic make-up of the tumor in that patient. Currently, we are far from 
being able to individualize treatments. Hence much research goes into stratification, which 
essentially recognizes that the tumor genetic make-up is in the end not so unique to each patient and 
the molecular features are in the end not that specific to an individual tumor. I have already argued 
that this represents to me a conceptual fallacy, in that this definition of stratification may well apply 
to decades of clinical management of cancer based on histopathological classification, which makes 
the concept of precision medicine a bit ridiculous. What is not ridiculous is the realization that 
different drug regimens can be utilized to target the molecular features typical of a patient segment. 
There are classic examples that are frequently reported to corroborate this realization: gefinitib in 
lung cancer patients with EGFR mutations (150), vemurafenib in melanoma patients with BRAF 
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mutations (151), and imatinib in gastrointestinal stromal tumor patients with cKIT mutations (152). 
In general, targeted therapies have transformed the chances of survival of cancer patients. A 
collaborator of ours brought to our attention that the prognosis of metastatic ccRCC has 
dramatically improved since the introduction of tyrosine-kinase inhibitors (153), and I think it is fair 
to say that this positive trend applies to many different cancer types. Compellingly, the only 
stratification here applied is the tissue of origin and the tumor grading and/or staging, so this 
success should not be attributed to precision medicine (154). (Anecdote: a phase III trial in 
advanced squamous-cell non-small-cell lung cancer recently reported the superiority of nivolumab 
as opposed to the current standard of care (155). This is a novel targeted therapy that inhibits the 
signaling mediated by the programmed death 1 (PD-1) receptor, which is engaged by ligands often 
expressed by this cancer type. Based on this, precision medicine would argue that a stratification 
based on the ligand expression could separate the patients that respond better to the therapy. Too 
bad that the superiority of nivolumab was independent of the expression of the ligand, which was 
neither prognostic nor predictive of benefit). I am not suggesting that precision medicine did not 
produce a relevant progress in cancer care, in that I believe that whatever improves the survival 
chances of a patient is an undisputable progress. However, I argue that at this stage its conceptual 
impact far supersedes its factual impact. At the opposite extreme stands the position of researchers 
who stratify all patients based on the sole feature of bearing a tumor (apologies for the contradiction 
in terms). This position is bashed by proponents of precision medicine, on the wake of the 
(perceived?) limitations of untargeted therapies, like chemotherapy. I propose that researchers in 
this position produced encouraging progresses, which, contrary to precision medicine, have the 
potential to reach and benefit all cancer patients. My favorite example is the anti-tumorigenic 
activity of MTH1 inhibition. MTH1 is a protein responsible for sanitizing damaged bases prior 
incorporation into the DNA. Gad et al. found this activity to be essential only in cancer cells, 
possibly because bases are damaged at much higher rate than DNA and this process is continuous 
throughout cancer evolution. Accordingly, inhibition of MTH1 was found to eradicate cancer in 
patient-derived mouse xenografts (156). This work demonstrates that there is still a window to kill 
cancer by attacking the phenotype rather than its genetic background.  
 
In my opinion, the greatest breakthrough for cancer care is not precision medicine but an impressive 
advancement in medical technologies. NGS is starting to revolution healthcare. Thanks to 
progresses in the quality, speed, and cost-effectiveness of this technology, medical doctors have in 
their hands an instrument that is primarily changing the way they diagnose disease. A pivotal 
clinical study in 2013 reported the successful use of NGS in patients so referred for evaluation for a 
possible Mendelian disorder (157). However applications of NGS to inform clinical diagnostics 
were found also in non genetic diseases. An illuminating example is the case of a 14-year old boy 
with severe neurological conditions in which the diagnostic workup was unrevealing. NGS of the 
cerebrospinal fluid yielded 3,063,784 sequence reads of which 475 reads did not belong to the 
human genome, but rather mapped to the Leptospiraceae family. This corresponds to 0.02% of all 
reads. The patient was treated for neuroleptospirosis and subsequently discharged home close to his 
premorbid functional status (158). In cancer, NGS will on one hand provide information on the 
presence of cancer predisposition genes in a certain individual, hence aiding in the identification of 
population at risk (159), and on the other hand eventually fulfill the promise of precision medicine, 
by informing oncologists on clinically-actionable genomic aberrations in the patients’ tumors (160, 
161). However, advancements in medical technologies for cancer care go beyond NGS. Particular 
credit deserves in my opinion nanotechnology, in which some prototypes may replace the need for 
sophisticated cancer biology in order to effectively treat patients (162). Nonetheless, significant 
contributions came from the more classical fields of biomedical engineering as well as 
biochemistry, in the form of devices and assays that can aid cancer diagnosis and follow-up. I 
selected three representative examples. The first is a microdevice that tackles the long-standing 
problem of drug inefficacy in human tumors. Indeed, despite considerable effort is spent in finding 
druggable targets and demonstrating its efficacy in preclinical models (such as mice), the dominant 
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reason for failure in drug development is lack of efficacy in humans. Jonas et al. (163) designed a 
microdevice that simultaneously tests multiple drugs in the living tumor, in which it is implanted 
via a minimally invasive biopsy, and returns the individual drug or combinations of them that 
produced the best response. The second example is a diagnostic device developed by a company 
called Miroculus. This consists in a blood test, in which circulating microRNAs are profiled and 
this profile is matched to cancer signatures via machine learning to return real time the occurrence 
of a certain cancer type. Even if the technology is not published, it is based on the breakthrough 
discovery made in 2008 by Mitchell et al., who showed that circulating microRNAs are diagnostic 
in cancer patients (164). The third example is a biochemical assay that has the same scope as the 
above-mentioned implantable microdevice. In this case, cells extracted from a primary tumor are 
exposed to different drug treatments and a quick kinetic tracer analysis allows computing the 
induction of apoptosis accomplished by the different drugs, within 24 hours from the biopsy (165). 
 
What about systems biology? How did it contribute to a progress in cancer care? Simply put, it did 
not. In my opinion, systems biology has delivered proofs-of-concept, but its major contributions 
stand in fundamental research. For example, a study often cited for its elegance was performed by 
Graham et al. (166). In this work, the researchers dissected how glucose deprivation leads to cell 
death. They demonstrated that a positive feedback loop involving cross-talk between metabolism 
and phospho-tyrosine signaling is activated upon glucose withdrawal, even in cancer cells where 
active tyrosine kinases are constitutively expressed. In the same fashion, another example is 
provided by the work by Komurov et al. (167), in which the authors investigated why a subtype of 
breast cancer cells acquired resistance to lapatinib. They discovered that resistant cells activated a 
response network induced glucose deprivation to counteract the drug toxicity. Some clinical 
applications in systems biology exist in the form of proofs-of-concept, even though it is not clear to 
me the boundary within which these projects qualify as systems biology. Systems biology must rely 
on emerging properties of networks of interacting components, as clearly demonstrated by the 
studies by Graham et al. and Komurov et al. The Institute for Systems Biology (Seattle, United 
States) is promoting the 100k wellness project (168), aimed at collecting a vast amount of 
biological and clinical data from a hundred thousand individuals. This data is crunched to deliver 
predictions on individual health status, to undertake actionable healthcare and critically inform the 
physicians. It is unknown at this stage how the researchers in the institute intend to mine this wealth 
of data, but I nourish little expectation on the fact that interactions between data points will be taken 
in account, as systems biology would dictate.   
 
My view of cancer has been transformed by four year of scientific research. I have a deeper 
understanding on how cancer works, but I honestly cannot form an opinion on how this affects my 
expectations when cancer is under the lens of a clinician rather than a scientist. I know that some 
forms of cancer can be cured, as well as others are unescapably lethal. If I were diagnosed with 
cancer today, I would feel that my expertise is of little help in the task of encouraging myself that 
there is hope. The contrast between the scientific reality and the clinical reality of cancer is too 
overwhelming for me. Due to this, in the course of my PhD I have shied away from making any 
claim on potential cures for cancer. I would find that ludicrous. I do not know whether the cure of 
any cancer will come from precision medicine, rather than nanotechnology, molecular or systems 
biology, or a radical paradigm shift on the origin of cancer. But I have hope in science. 
 
Dear science 
I consider the doctoral thesis concluded with the previous section. However, I would like to take 
advantage of this last part to write a brief essay on science as I see it. My thesis is that scientific 
knowledge is accumulating at a pace lower than its full potential, due to (1) misconduct of academic 
research, (2) problematic dissemination of knowledge, and (3) irrelevance of most scientific 
research. The arguments in support of my thesis are largely, if not entirely, overlapping with the 
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view of scientific knowledge elaborated by Karl Popper, which I borrow and revisit to provide a 
concise line of argumentation, allowing me also to be brief.  
 
It is helpful to give the definition of scientific knowledge. Knowledge is the ability of declaring 
something true or not, and truth is what corresponds to reality. I will not elaborate further what I 
intend by reality, as I believe that the intuitive understanding of this word by the reader is sufficient 
to comprehend my thesis. I insist on the distinction that Popper makes between truth and certainty, 
because it stands at the heart of what I perceive as vast misconduct in the world of academic 
research. We can conjecture that we know something because we can elaborate a theory that can be 
said true, in that it corresponds to reality, but we can never be certain about it. Certainty can never 
be achieved. This point to me is trivial, but I am continuously amazed when I am confronted with 
discordance on this matter, so I propose some arguments that will become handy also later on. 
Reality as we know it is in fact a purely sensorial experience, in that our senses represent the mean 
and the limit through which we can interface with reality. Arthur Schopenhauer called this sensorial 
interface a deceptive veil of Maya. I turn instead to the Kantian interpretation, which prescribes that 
our knowledge of reality is the imposition on reality of rules and theories produced by the cues we 
attain via our senses. Nothing is certain because we are the artifices of the rules and theories that 
shape reality. We build knowledge by producing rules and theories that do not contradict reality as 
we perceive it, in other words that are true. What is scientific knowledge then? It is the 
accumulation of knowledge through criticism. The duty of a scientist is to critically examine 
whether the rules and theories that he/she or others have proposed for a certain aspect of reality are 
true, attempt to refute them, and replace them with rules and theories that are true until subsequent 
refutation. Note that I believe that my only disagreement with Popper’s philosophy of science 
stands in the idea that all we can do as scientists is to prove a theory as false, and never as true.  
 
This brings me to the first part of my thesis, a critique towards misconduct of academic research. 
My first point is that the above arguments should be convincing that any academic research that 
proposes to demonstrate a theory or a rule as true or, even worse, as certain is a wrongdoing. 
(Dogmatism in science is a gruesome symptom of idiocy.) Indeed, every experiment we design, 
every observation we make, every logical statement we infer to perpetuate scientific knowledge has 
the sole scope to refute a theory or a rule. What is commonly perceived as a failed experiment is our 
success in the refutation of a theory. My second point is therefore that academic research is 
misconducted whenever a scientist ignores a refutation on purpose. The reason why a scientist 
would willingly ignore a refutation is that failure in the process of refutation produces so-called 
corroborative evidence. Corroborative evidence supports the theory rather than refuting it. 
However, dare not to use corroborative evidence as a proof of truth. It simply states our incapacity 
to realize a better knowledge of reality. Of course, we can be content with our current knowledge. 
But if we stop attempting to refute a theory or a rule, than we actively choose not to seek for truth 
anymore, hence we cease being scientists. If in the past we had been content with the Newtonian 
theory of gravitation, which has accumulated corroborative evidence for centuries thanks to its 
excellent predictions, we would have never realized that it is factually wrong. Again, we can be 
content with our current knowledge, most people are. Engineers are a great example of people who 
do no seek further truth but exploit the current theories to build technology. (A great deal of 
technologies is based on Newtonian laws.) The myth that we can prove a theory as true by means of 
corroborative evidence is best described as a fallacy, in my opinion, by Nicholas Taleb’s theory of 
Black Swans. This theory convincingly re-elaborates the consequences of an instinctive 
psychological human bias known as the confirmation bias. Whenever we ignore a refutation in 
favor of corroborative evidence, we commit a fallacy and foster misconduct in academic research. 
 
The second part of my thesis is that, regrettably, many scientific journals seem to be unaware about 
the process of accumulation of scientific knowledge, despite being the main channel for its 
dissemination. Since scientists can only prove the refutation of a theory, any request to demonstrate 
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its truth is ill defined. The role of scientific editors and peer reviewers should be the role of any 
scientist: a constant attempt to refute what proposed by the authors. Hence, any request for new 
experiments, any instance of doubt about novelty, and any suggestion of rejection are justified 
solely in view that the theory or rule offered by the authors can be proven false. As a young 
practitioner, all too often I witnessed that this does not remotely apply to a peer review process. My 
most dreadful experiences came from reviews in which fellow scientists object that the statistical 
confidence on a certain hypothesis is not sufficient to prove a theory or rule as true. This statement 
is heretical under so many aspects. The purpose of statistical confidence is to score our propensity 
to reject a certain hypothesis behind a theory that we believe is true. Both the fact that we are 
measuring a propensity and the fact that statistical confidence can only reject a hypothesis are 
sufficient to discard such review as idiotic. More on statistical confidence. A scientist uses tests that 
reveal a statistical confidence on a certain hypothesis to convince himself/herself that what he/she 
observes is not attributable to chance, in other words to reject the theory that chance can generate 
such hypothesis. There are two implications here. First, statistical confidence measures a 
propensity. It is down to the scientist to gauge this metric and decide whether the theory alternative 
to chance is more likely to be true. The second point descends straightway. Statistical confidence is 
a mean, not a purpose. Any observation adjusted to achieve statistical confidence is to repudiate. 
This act entices the misconduct of ignoring a refutation in favor of corroborative evidence. 
Trivially, the correct way to proceed is to refute the current theory or rule and replace it with a 
theory or rule that matches reality. 
 
The third part of my thesis might sound controversial, but I believe it derives quite straightforward 
from the arguments I presented above. Scientific knowledge must start from a theory that we, as 
scientists, attempt to critically refute. If we fail in this process than we are corroborating the theory. 
I argue that most scientific research is dedicated to corroboration. This research did not propose any 
advancement in our search for truth and it is hence irrelevant. If we succeed in the refutation, than 
we ought to propose a new theory, which other fellow scientists and we are designated to criticize. 
Most of the time that scientific research incurs in this stage, which I do not believe to happen often, 
the scientists propose a variation of the current theory that is better than the refuted theory in its 
adherence to reality, and that we can thus endorse as true. Now, one may judge a variation of the 
current theory as a relevant advancement in scientific knowledge. I do not doubt that this process 
constitutes the backbone of accumulation of scientific knowledge. However, I can hardly find 
excitement in that. It seems to me that a variation to a refuted theory was somehow embedded in the 
current theory, and just awaited to be discovered. There is a third way. It occurs when the scientists 
cannot propose a variation of the refuted theory as a replacement to the current theory. The 
evidences simply do not support any current theory or rule that we believe to be true, and they are 
perceived as anomalies. Thomas Kuhn termed these situations in science as crises. Eventually, 
brilliant personalities in the history of science propose a radically novel theory that renders the 
anomalies adherent to reality. In the vocabulary of Kuhn, these moments are the paradigm shifts 
that we commonly refer to as scientific revolutions. In this fashion, science is articulated by 
accumulation of scientific knowledge through variations of the current theory until the theory 
produces inexplicable anomalies that are solved by scientific revolutions. In this sense, I regard 
scientific research relevant only if it fuels a scientific revolution. As a consequence, I value 
scientific research relevant if it has the ambition to (a) successfully refute the current theory and (b) 
propose a radically new theory adherent to reality because it solves a crisis. 
 
In my short experience of scientist, I have formulated my personal recipe in the attitude towards 
scientific research. There are fundamentally two main ingredients: skepticism and passion. 
Skepticism is an extreme of the rational criticism necessary to the practice of science. It underlies 
an assumption of suspicion, because it acknowledges the fact that we scientists are humans 
susceptible to fallacies. Passion is fundamental because I realized that in the actual practice of 
science it is rare to find yourself in the situation where your research is relevant, as previously 
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defined. However, we can undertake an emotional involvement in our quest to ameliorate the 
adherence of reality of the current theory. Most of the time we fail in this scope, and this causes 
frustration, which is irrational in consideration that we just succeeded in refuting a theory that is not 
true, but which is comprehensible in light of our passion. Sometimes we succeed, and passion 
rewards us, even though we are most likely simply perpetuating the current theory with a minor 
incidental variation. But, rarely, we might be causing a scientific revolution. 
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Several common oncogenic pathways have been implicated in the
emergence of renowned metabolic features in cancer, which in turn
are deemed essential for cancer proliferation and survival. However,
the extent to which different cancers coordinate their metabolism
to meet these requirements is largely unexplored. Here we show
that even in the heterogeneity of metabolic regulation a distinct
signature encompassed most cancers. On the other hand, clear cell
renal cell carcinoma (ccRCC) strongly deviated in terms of metabolic
gene expression changes, showing widespread down-regulation.
We observed a metabolic shift that associates differential regulation
of enzymes in one-carbon metabolism with high tumor stage and
poor clinical outcome. A significant yet limited set of metabolic
genes that explained the partial divergence of ccRCC metabolism
correlated with loss of von Hippel-Lindau tumor suppressor (VHL)
and a potential activation of signal transducer and activator of tran-
scription 1. Further network-dependent analyses revealed unique
defects in nucleotide, one-carbon, and glycerophospholipid metab-
olism at the transcript and protein level, which contrasts findings in
other tumors. Notably, this behavior is recapitulated by recurrent
loss of heterozygosity in multiple metabolic genes adjacent to VHL.
This study therefore shows how loss of heterozygosity, hallmarked
by VHL deletion in ccRCC, may uniquely shape tumor metabolism.

cancer metabolism | systems biology | genome-scale metabolic modeling |
renal cancer

There is now widespread consensus that diversion of metab-
olism is among the most distinguished cancer phenotypes,

and it is often postulated to characterize virtually all forms of
cancer (1, 2). Indeed, many common oncogenic signaling pathways
have been implicated in the emergence of specific metabolic
features in cancer cells that have been associated with both sur-
vival and sustained abnormal proliferation rate (2–5). However,
only a fraction of the metabolic reactions potentially occurring in
a generic human cell are typically involved in such processes. Only
recently a systemic study using transcriptional regulation has
attempted to rule out the possibility that other metabolic pro-
cesses in the network may achieve equal importance in cancer cells
(6), and the idea that all cancer cells display a unique metabolic
phenotype has spurred disputes that mainly highlighted a lack of
comprehensive evidence (7). Taken together, we contend that only
a systems perspective may help to elucidate the extent to which
different cancer cells coordinate their metabolic activity.
In this context, systems biology approaches have been dem-

onstrated to lead to the identification of altered metabolic pro-
cesses in disease development with regard to those disorders that
are driven or accompanied by metabolic reprogramming, in-
cluding cancer (8–11). To this end, the reconstruction of
genome-scale metabolic models (GEMs) is instrumental to knit
high-throughput data into the metabolic network topology.
Such integrative and network-dependent analysis enables pre-
diction of how systems-level perturbations are translated into
alterations in distinct and biologically meaningful modules and,
at the same time, elucidation of genotype–phenotype relation-
ships (12).

Results
Distinct Changes in Metabolic Gene and Protein Expression in Tumors.
Until recently (6, 13, 14) it has been largely overlooked (i) the
extent to which the metabolic phenotype is dissimilar with respect
to healthy cells, and (ii) the extent to which it affects the complete
metabolic network. We therefore used a GEM of the human cell
and integrated high-dimension datasets of omics data, from both
tumor-adjacent normal and cancer tissues. GEMs are models that
account for all known reactions and matched metabolites in a cell
and include the current knowledge for gene–protein reaction
associations for each reaction. Here we used the human metabolic
reaction (HMR) model, which comprises 7,943 reactions, 3,158
unique metabolites across eight compartments, and 3,674 genes
and represents the most comprehensive compilation of human
metabolic reactions (15). As for the omics data, we focused on
RNAseq gene expression profiles and immunohistochemical pro-
teomics. For cancer samples, we retrieved 539 transcriptomes and
25 proteomes, whereas for tumor-adjacent normal samples we re-
trieved 257 transcriptomes and 74 proteomes (SI Appendix, Table
S1 and Dataset S1). We focused to include gene products that
overlapped with the list of 3,674 genes in HMR. The HMR cov-
erage was 97% for the transcript profiles in all cancers and tumor-
adjacent normal samples. As for the protein profiles, because the
protein coverage was heterogeneous across the samples, the
HMR coverage was either 18% or 45%, depending on whether
both tumor-adjacent normal and cancer samples or only cancer
samples were pooled, respectively (SI Appendix, SI Materials and

Significance

It is suggested that regulation of metabolism is a point of
convergence of many different cancer-associated pathways.
Here we challenged the validity of this assertion and verified
that a transversal metabolic signature in cancer emerges
chiefly in the regulation of nucleotide metabolism. However,
the most common form of renal cancer deviates from this be-
havior and presents some defects in its metabolic network not
present in the normal kidney and unseen in other tumors.
Notably, reduced copy number in key metabolic genes located
adjacent to VHL (a tumor suppressor gene frequently deleted
in this cancer) recapitulates these defects. These results are
suggestive that recurrent chromosomal loss of heterozygosity
in cancer may uniquely shape the metabolic network.
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Methods). Even if metabolic-related proteins had lesser cover-
age, they are fairly representative for most canonical metabolic
pathways (SI Appendix, Fig. S1).
The degree of similarity in metabolic gene expression between

cancer and tumor-adjacent normal samples was assessed using
principal component analysis (PCA) and mutual correlation-
based hierarchical clustering. First, the similarity in the abundance
of all metabolic transcripts across cancer and tumor-adjacent
normal samples was evaluated (SI Appendix, Figs. S2 and S3).
Both PCA and hierarchical clustering show that a group of
cancer samples displays a substantial deviation from the general
transcriptional pattern of most cancers. However, if these cancer
samples are neglected, PCA reveals a consistent transcriptional
response in different cancers opposed to tumor-adjacent normal
samples, which is independent of cancer type and remarkable
because the control samples were obtained adjacent to the tumor
(note that the first principal component was neglected because it
seems to account for few outliers; SI Appendix, Fig. S4). Con-
versely, hierarchical clustering shows a higher similarity in the
gene expression of tissue-specific samples rather than across all
cancer-labeled samples (SI Appendix, Fig. S3). This shows that
cancers undergo a considerable alteration in metabolic gene
expression profiles, but they also retain substantial similarity
with the regulation of metabolic gene products of their matched
tumor-adjacent normal tissue, in accordance with a recent study
(6). This led us to speculate that although cancer samples reg-
ulate only a subset of metabolic genes upon transformation and
preserve the expression of the remaining as in the tissue of ori-
gin, this regulation may be consistent and orchestrated across
different cancer types. To verify this, PCA and hierarchical clus-
tering were performed for those metabolic genes (∼20%) that
changed expression at statistical significance and across at least
four histological cancer types, thereby subtracting the effect of
tissue of origin (Fig. 1A and SI Appendix, Fig. S5 and Table S2).
In both analyses, the distinction between most cancer and tumor-

adjacent normal samples becomes apparent. In particular, hi-
erarchical clustering provides clear evidence for the fact that
most cancer samples modulate the expression of a distinct
group of metabolic transcripts in a similar fashion, regardless
of their histological classification. Next, multiple correspon-
dence analysis (MCA) was performed to check whether the
conclusions above also hold at the level of protein expression.
Accordingly, proteomics data confirm that the expression of
metabolic gene products is more similar between cancer samples
than to normal tissues, which are distinctly separated (SI Appendix,
Fig. S6A). However, within cancer samples no obvious cluster
emerged, perhaps owing to less coverage (SI Appendix, Fig. S6B).
Taken together, these analyses suggest that the transformation
entails a partial yet significant remodeling of metabolic regu-
lation, both at the transcript and protein level, which is trans-
versal and to some extent coordinated within the disease
phenotype and does not overlap with that of the tumor-adjacent
normal tissue.

Deviation of the Transcriptional Program in Clear Cell Renal Carcinoma
Metabolism. The above conclusion only holds provided that the
cluster of deviating samples is not taken into account. We ex-
plored the nature of this cluster by correlating samples with
available clinical data, and strikingly, all samples belonging to
this cluster share a common histological type [i.e., clear cell renal
cell carcinoma (ccRCC)] (SI Appendix, Figs. S2 and S3). Fur-
thermore, such an anomalous profile is not attributable to an
inherent elevated metabolic activity of the tissue of origin: when
PCA was performed on the reduced pool of metabolic genes that
significantly changed expression in most cancer types, ccRCC
samples still separated clearly (Fig. 1A and SI Appendix, Fig. S5).
Additionally, we noticed that papillary cell renal cell carcinoma
samples present in the previous analyses did not overlap in terms
of transcript abundance with ccRCC (SI Appendix, Fig. S7) and
did not correlate with the previously neglected first principal

A B

Fig. 1. Clustering analysis of metabolic gene expression profiles for cancer and tumor-adjacent normal samples. (A) Hierarchical clustering of absolute
metabolic gene expression levels (RPKM) for cancer and tumor-adjacent normal samples, featuring only those genes that significantly changed expression
across most cancer types upon transformation, thereby subtracting the effect of the tissue of origin. (Lower) Corresponding tissue of origin for each sample
in the heatmap above. (B) PCA of log2 metabolic gene expression fold-change vs. matched tumor-adjacent normal samples for ccRCC (gray) and other
cancer type samples (orange).
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component (SI Appendix, Fig. S8). The deviation of ccRCC
becomes even more evident when the metabolic gene expression
fold-changes (FC) replace the transcript abundance in the PCA,
which is suggestive of an opposite direction of regulation com-
pared with other cancer types (Fig. 1B). Given that ccRCC
samples present a lower and more variable tumor cellularity than
the other cancer types in this study (16, 17), we tested the hy-
pothesis that a higher stromal content may be responsible for the
apparent outstanding regulation of metabolic gene expression in
ccRCC. We inferred scores for tumor purity from gene expres-
sion profiles using ESTIMATE (17). These scores showed a
moderated increase of infiltrating cells in ccRCC samples com-
pared with others (SI Appendix, Fig. S9). However, when each
metabolic gene expression fold-change value was adjusted using
a simple linear regression on the stromal score for a given sample,
we still observed a distinct separation of ccRCC from the other
cancer types (SI Appendix, Fig. S10). These results suggest that
unique patterns of regulation are rewiring ccRCC metabolism,
which are markedly distinct from any other cancer in this study
and that are not utterly ascribable to the tissue of origin or to the
purity of the tumor. Indeed, the comprehensive molecular char-
acterization of ccRCC that produced the data used in this study
highlighted a considerable relationship between glycolytic metab-
olism and overall survival (16). However, the extent to which
a shift toward a “Warburg effect”-like state may inherently explain
the here-reported deviation of ccRCC metabolic regulation is
questionable. Indeed, aerobic glycolysis is a hallmark reported in
other different cancer types. Moreover, the number of regulated
genes involved in this metabolic process (∼40 as reported in ref.
16) is relatively low compared with the number of metabolic genes
that clustered ccRCC distant from the other cancer types. These
considerations hinted to us that other pathways may be strongly
and uniquely regulated in ccRCC. Therefore, we computed for
each cancer type the differential gene expression fold-changes
compared with tumor-adjacent matched normal samples. We found
that 2,539 metabolic genes are significantly regulated in ccRCC
vs. tumor-adjacent kidney (P < 0.05), of which 329 genes are
substantially up-regulated (log2FC ≥1) and 551 down-regulated
(log2FC ≤−1). This shows that there is a major disproportion
toward down-regulation of metabolic genes in ccRCC. To test
whether metabolic down-regulation is a common feature across
different cancer types upon transformation, the actual discrete
adjusted fold-change distribution in the population of ccRCC
samples was compared with the population of the remaining
cancer samples, and the former tend to have lower values (P <
10−15, Mann-Whitney U test; SI Appendix, Fig. S11). We also
observed that the adjustment for the stromal score corrects for
an overestimation in terms of down-regulation. Additionally, the
empirical cumulative distribution of adjusted fold-changes in
the population of ccRCC samples was compared with the pop-
ulation of the remaining cancer samples. Again, we confirmed
that there is a significant shift toward down-regulation in ccRCC
with respect to the other cancer samples (P < 10−15, Kolmogorov-
Smirnov test; SI Appendix, Fig. S12). On the other hand, when
the former test was repeated binning the remaining cancer sam-
ples according to their cancer type, endometrial cancer samples
also showed a similar tendency (SI Appendix, Fig. S13). Taken
together, these results are suggestive of widespread repression
of metabolic gene expression in ccRCC, which in part explains
the deviation observed above.

ccRCC Uniquely Regulates Nucleotide, Glycerolipid, and One-Carbon
Metabolism Compared with Any Other Cancer Type, the Latter Being
Implicated in Poor Prognosis. Next we sought to characterize the
impact of a ccRCC divergent transcriptional program on me-
tabolism as opposed to other cancer types. First, we checked in
each PCA whether we could identify a set of relevant loadings
responsible for the separation of ccRCC samples from the rest

(i.e., the metabolic transcripts with the highest eigenvalues in
each principal component—that is, highly associated with a sep-
aration on that component). However, neither in the PCA
clustering on transcript abundance (SI Appendix, Fig. S14) nor in
the PCA clustering on direction of gene expression regulation
(SI Appendix, Fig. S15) could a well-defined set of genes be
found. Therefore, we used network-dependent analyses to
identify how such a unique program of transcriptional regulation
diversely affected metabolism of ccRCC samples. For each of the
cancer types we identified reporter metabolites and pathways
(18) using our multiple gene-set analysis method (19) (Fig. 2
and SI Appendix, Fig. S16). As expected, in ccRCC diverse
areas of the metabolic network were either uniquely regulated
or not regulated compared with other cancer types, although
an ostensible heterogeneity can be viewed across all cancer types
(SI Appendix, SI Text). Among these, nucleotide metabolism and
alanine, aspartate, and glutamate metabolism, which were gen-
erally found up-regulated in most cancer types, were not signif-
icantly altered in ccRCC. On the other hand, the metabolism of
other amino acids (namely valine, leucine, isoleucine, cysteine,
methionine, glycine, serine, and threonine) was significantly down-
regulated only in ccRCC, as much as was the tricarboxylic acid
(TCA) cycle and enzymes that participate in the metabolism of
ubiquinone and ubiquinol (SI Appendix, Fig. S16), intermediates in
the electron transport chain (ETC). Finally, we report unique
changes in the metabolism of long-chain fatty acids and lactate
(SI Appendix, Figs. S17 and S18).
Moreover, we noticed that 1,504 genes that showed statis-

tical significance in patientwise expression fold-change across
all cancer vs. matched normal samples (P < 0.05, rank–product
test, Bonferroni correction) did not display any remarkable
change in expression level when averaging in the pool of ccRCC
samples. Unsupervised hierarchical clustering of patient-spe-
cific metabolic gene expression profiles featuring this set of
genes revealed two different clusters with opposite regulatory
directions (Fig. 3A). Interestingly, these clusters correlate with
patients’ tumor stage (P = 0.041, Pearson χ2 test; Fig. 3B).
Kaplan-Meier survival plots and log–rank tests were used to
assess the differences in overall survival, and accordingly, the
high tumor stage cluster is a predictor for poor prognosis (P =
0.012, log–rank test; Fig. 3C). Therefore, we sought to verify
whether an advanced tumor stage drives per se a different
transcriptional regulation of metabolism, as recently suggested
(16). To test this, 170 metabolic genes that have significantly
changed expression between high tumor stage (stage III to IV)
and low tumor stage (stage I to II) samples (P < 0.05, Wil-
coxon rank-sum test) were featured to cluster samples in
a supervised fashion. Contrary to the premises, the two clus-
ters that emerged from the analysis had a weaker association in
relation to the tumor stage (P = 0.1554; SI Appendix, Fig. S19)
but a comparable power to predict poor prognosis (P = 0.025)
(Fig. 3C). In both scenarios, the curves strikingly superimpose
with the survival plots based on the sole tumor stage in-
formation (high vs. low tumor stage; Fig. 3C), therefore sug-
gesting a metabolic gene expression profile that is shaped after
disease progression. To identify novel metabolic functions af-
fected by the differential program of metabolic regulation be-
tween the two clusters, we used the reporter metabolite
algorithm (18) (SI Appendix, Fig. S20). The analysis unveiled
some unreported changes (SI Appendix, SI Text). Among these,
we focused on dimethylglycine, a metabolite that belongs to
one-carbon metabolism. Dimethylglycine is synthesized from
betaine and subsequently converted into glycine (Fig. 3D).
Most enzyme-coding genes that are uniquely attributable to this
pathway display a significant difference in expression regulation
between the low and high tumor stage cluster, especially betaine–
homocysteine S-methyltransferase 1 (BHMT) and 2 (BHMT2)
whose expression reverse direction completely (SI Appendix,
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Fig. S21). These results suggest an unanticipated role for beta-
ine in ccRCC malignancy, which may parallel DNA hyper-
methylation frequency recently associated with an advanced

stage and grade of this tumor (16), given the established role of
betaine as a modulator of one-carbon metabolism and homo-
cysteine levels through BHMT (20).

Fig. 2. Reporter canonical metabolic pathways in each cancer type according to significant changes in metabolic gene expression vs. matched tumor-adjacent normal
tissues. Each box shows the log10 P value of the gene set representing a pathway in a certain cancer type, and the color indicates the overall direction of gene
expression regulation for the gene set (red, up; blue, down). BL, bladder urothelial carcinoma; BR, breast invasive carcinoma; HN, head and neck squamous cell
carcinoma; LUA, lung adenocarcinoma; LUS, lung squamous cell carcinoma; LI, liver hepatocellular Ccarcinoma; UC, uterine corpus endometrioid carcinoma.
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Upon Transformation, the ccRCC Metabolic Network Features
Widespread Loss of Function in Nucleotide, Glycerolipid, and One-
Carbon Metabolism, in Contrast to Any Other Tumors. Because
transcriptional regulation in ccRCC is suggestive of diffuse down-
regulation of key metabolic functions, we evaluated whether the
topology of its metabolic network reflected these premises. There-
fore, we generated a cancer cell type-specific GEM based on
protein evidence, using the INIT algorithm (21). Using the generic
human model HMR as a template, INIT reduces the network
according to proteomics evidence covering 15,156 proteins across
at least 10 renal carcinomas (>70% are clear cell). Of 15,156
protein-coding genes, 2,482 could be mapped to HMR, and the
reconstructed GEM, iRenalCancer1410, accounts for 3,913 re-
actions, 2,053 metabolites, and 1,410 genes, which means a re-
duction of 4,318 reactions (−53%) and 2,264 genes (−62%) from
the generic human metabolic model, mostly due to no or little
evidence for the encoded protein in most renal cancer samples
(SI Appendix, Fig. S22A). To assess which losses of metabolic
function are attributable to the transformation, we compared
iRenalCancer1410 with a published metabolic model of the kid-
ney cell in tubules (21), accounting for 4,812 reactions, 2,268

metabolites, and 2,240 genes (SI Appendix, Fig. S22B). The
comparison evidenced two interesting points. First, upon trans-
formation, the renal cancer metabolic network shrinks with
a reduction by approximately 20% of the number of reactions
and a reduction of more than 35% of the number of associated
genes, which clearly demonstrates a significant loss of metabolic
functions. Second, 852 metabolic genes that are present at the
protein level in the normal kidney cell are lost in the transformed
cell. These genes mainly belong to the metabolism of nucleotides,
glycerolipids, glycerophospholipids, glycosphingolipids, oxidative
phosphorylation, and inositol metabolism, among others (Fig.
4A). Conversely, 22 metabolic genes present only the renal cancer
network are associated with oxidoreductases in the endoplasmic
reticulum. To validate whether these metabolic perturbations oc-
curring during the transformation can be uniquely attributed to
renal cancer and therefore provide insights on the deviating pat-
tern of ccRCC metabolic regulation, we reconstructed cancer cell
type-specific metabolic models for four additional cancer types
(breast, lung, liver, and bladder) using the same procedure de-
scribed above. In line with the previous results that highlighted
a pronounced shift toward metabolic down-regulation in ccRCC

A D

B

C

Fig. 3. Metabolic gene expression profiles distinguish two cluster of differential regulation in ccRCC that implicate a role of one-carbon metabolism in the
malignancy. (A) Unsupervised hierarchical clustering of ccRCC log2 gene expression fold-changes vs. matched tumor-adjacent normal samples featuring the
set of 1,504 metabolic genes significantly different across all log2 gene expression fold-changes in cancer vs. matched tumor-adjacent normal samples. (B)
Clinical data for each ccRCC sample as ordered by the hierarchical clustering in A. Tumor stage ranges from stage 1 (white) to stage 4 (dark red); age is
represented by a gray-scale in which the lowest value is 38 y and highest 90 y; metastatic tumors are depicted in blue. (C) Kaplan-Meier survival curves for the
two clusters in A (solid line), for the two clusters in SI Appendix, Fig. S19 defined when featuring significantly changed genes between the pool of high
tumor stage and low tumor stage samples (short dashed line), and for the two groups of samples solely identified by a high or low tumor stage (long
dashed line). Blue and green lines refer to high and low tumor stage, respectively. (D) Gene expression regulation of enzymes involved in choline
degradation to glycine in the two clusters in A.
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compared with any other tumor, the metabolic network recon-
struction of iRenalCancer1410 resulted in a substantially smaller
model than in any of the other cancers. Moreover, the compari-
son of each of the four metabolic networks against iRenal-
Cancer1410 revealed that 169 metabolic genes were present in
all cancer models except for the renal cancer model, more than
for any other cancer (on average, 41 ± 28 metabolic genes are
lost in a model compared with the rest; Fig. 4A). Strikingly, 159
of these genes are also present in the normal kidney cell meta-
bolic network, therefore confirming that the above-observed
metabolic perturbations in ccRCC are unique. As a conse-
quence, key enzymes are missing in the metabolism of glyc-
erophospholipids, inositol, and one-carbon, as well as oxidative
phosphorylation (Fig. 4A and SI Appendix, Fig. S23). Additionally,
nucleotide metabolism is severely compromised, spanning both de

novo biosynthesis, which is generally up-regulated in cancer (6),
and successive degradation of nucleosides (Fig. 4B). In particu-
lar, we observe that absence of inosine 5′-monophosphate de-
hydrogenase 1 (IMPDH1) and 2 (IMPDH2), which commit IMP to
initiate guanosine synthesis; RRM1 and TXN, which catalyze the
synthesis of deoxyribonucleotides from the corresponding ribonu-
cleotides; NME/NM23 family member 5 (NME5), NME/NM23
nucleoside diphosphate kinase 4 (NME4) and 6 (NME6), which
are involved in nucleoside triphosphates biosynthesis from nucle-
oside diphosphates; and several enzymes in the 5′(3′)-deoxyribo-
nucleotidase family, which dephosphorylates different deoxyribo-
nucleotides. Taken together, a widespread repression of protein
expression clearly limits the redundancy of genes in key metabolic
pathways (most importantly nucleotide metabolism), a fact un-
detected in any other cancer type.

Divergence of ccRCC Metabolic Regulation Can Be Ascribed to Loss of
Heterozygosity in Key Metabolic Genes Adjacent to von Hippel-Lindau
Tumor Suppressor After Its Deletion. The divergence of ccRCC
metabolic regulation compared with any other tumor and
normal kidney is apparent both in the transcriptional regulation
and its metabolic network. On one hand, the analysis of tran-
scriptional regulation revealed that even though each type of
cancer in this study displayed a complex and heterogeneous
pattern of metabolic regulation in different pathways, ccRCC
features a unique tendency to generally down-regulate large
parts of metabolism. Only ccRCC strongly represses expression
of cysteine and methionine metabolism (part of one-carbon
metabolism), branched-amino acids metabolism, the metabo-
lism of glycine, serine, and threonine, the TCA cycle and the
ETC, as well as glycerolipid metabolism (with emphasis on fatty
acid elongation). Additionally, whereas most tumors up-
regulate nucleotide metabolism and the metabolism of alanine,
aspartate, and glutamate, ccRCC shows a mixed pattern of
regulation that results in both overexpressed and repressed
genes in these pathways. On the other hand, the analysis of the
metabolic network uncovered that ccRCC relies on a relatively
small network, which features loss of gene redundancy in key
metabolic pathways (e.g., oxidative phosphorylation and
nucleotide, inositol, one-carbon, and glycerolipid metabolism)
otherwise unaffected in any other cancer or in the normal
kidney. Therefore, we sought to characterize the possible cau-
ses underlying the above-described metabolic features that
render ccRCC different from all of the other cancer types
upon transformation (Fig. 5).
First we considered the genetic background of ccRCC. Spo-

radic ccRCC (which represents 75% of all renal carcinomas) is
generally characterized by mutations in the VHL tumor sup-
pressor gene (16, 22). Deletion of Von Hippel-Lindau tumor
suppressor (VHL) results in the stabilization of the hypoxia-in-
ducible transcription factor (HIF) under normoxic conditions and
thus entails a profound rewiring of mammalian oxygen-sensing
pathways (23). Therefore, we tested the hypothesis that loss of
VHL is one of the possible causes for the unique metabolic repro-
gramming of ccRCC. First, copy number variants (CNVs) for 62
ccRCC samples used in the PCA were checked in the region of
VHL, and in 90% (56 of 62) of the samples the VHL gene locus
was found consistently deleted, as opposed to matched tumor-
adjacent normal samples (SI Appendix, Fig. S24). In addition, 52%
of these samples (32 of 62) harbored a VHLmutation that mostly
results in the deactivation of the corresponding protein (SI
Appendix, Fig. S24). Second, the metabolic gene expression
changes for each examined cancer type vs. matched normal tis-
sues were correlated with an analogous comparison between two
isogenic ccRCC cell lines (786-O), in which one of the cell lines
is a VHL mutant with a frameshift deletion, whereas the second
had VHL reintroduced (24). By comparing the VHL-deficient
cell line against the VHL-reintroduced cell line, 1,339 genes were

A

B

Fig. 4. Reconstruction and comparison of ccRCC-specific GEM (iRenal-
Cancer1410) against other cancer-type GEMs and the normal kidney cell
in tubules GEM. (A) Venn diagram for the metabolic genes present in
iRenalCancer1410 compared with other reconstructed GEMs (cancers, Left,
kidney cell in tubules, Right). Metabolic genes absent in iRenalCancer1410
but present both in the kidney cell in tubules GEM and other cancer type
GEMs were used to enrich canonical pathways. (B) Nucleotide metabolism
featuring the staining level of proteins taken from HPA for different tissues
(Center: ccRCC; Left: BR, breast cancer; BL, bladder cancer; LI, liver cancer; LU,
lung cancer; Right: NK, kidney cell in tubules).
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found significantly regulated, of which 290 are metabolic (P < 0.05,
119 up-regulated, 171 down-regulated). Among all of the cancer
types analyzed, only the direction changes in metabolic gene ex-
pression coming from ccRCC samples correlated with the above
pattern of transcriptional regulation (P < 0.05; SI Appendix, Fig.
S25). The correlation is even stronger when a more stringent
significance level is used (P < 0.01; SI Appendix, Fig. S26). Despite
the limited number of genes differentially regulated in the VHL-
deficient cell line, the amount of metabolic genes coregulated with
ccRCC (228) was found to be overrepresented (P < 10−4, Fisher’s
exact test), in particular the up-regulated ones (P < 10−4; SI
Appendix, Fig. S27). Such genes are not exclusively ascribable
to kidney or renal carcinoma, as revealed by functional clustering
based on tissue expression data (SI Appendix, Table S3). These
results were successfully replicated using an analogous yet in-
dependent dataset (25) (SI Appendix, Fig. S25). The analysis of
these data indicates that in ccRCC VHL loss is indeed associated
with the regulation of a significant portion of metabolic genes,
whereas such association could not be recapitulated in any other
cancer type. We therefore explored the metabolic functions af-
fected by expression changes in the 228 genes regulated by loss of
VHL that are associated with ccRCC. To this end, reporter path-
ways were computed as described above. Only three pathways
were shown to be significantly regulated in a consistent direction
by this set of genes, namely alanine, aspartate, and glutamate me-
tabolism, valine, leucine, and isoleucine metabolism, and fatty acid
elongation (SI Appendix, Fig. S28). In all three cases, gene ex-
pression was shifted toward down-regulation. Therefore, loss of
VHL alone may explain why these pathways are repressed or mixed
regulated only in ccRCC and not in the other tumors (Fig. 2 and
SI Appendix, Fig. S16). Given VHL involvement in oxygen sensing,
we also tested whether pseudohypoxia induced by VHL inactiva-
tion may drive per se a divergent transcriptional response with
respect to environmental hypoxia seen in most tumors and the
normal kidney (26, 27), but no such correlation could be found
(SI Appendix, SI Text and Fig. S29).
Apart from VHL loss-mediated stabilization of HIF, other

transcription factors may be triggered only in ccRCC, thus shed-
ding light on the other differentially regulated metabolic func-
tions. Hence, metabolic gene expression changes were used in
our multiple gene-set analysis method to identify reporter tran-
scription factors in each cancer type (SI Appendix, SI Text and
Fig. S30). Notably, signal transducer and activator of transcrip-
tion 1 (STAT1), an anticarcinogenic transcription factor (28), is
deemed associated only to ccRCC as it regulates many of the up-
regulated metabolic genes. Indeed, the STAT1 gene set com-
prises 4,381 genes, and 264 of them are metabolic genes that
were significantly overexpressed in ccRCC (P < 0.01). Surpris-
ingly, these genes were found to relate to inositol and nucleotide
metabolism, among others (SI Appendix, Table S4), even though
the above analysis of the ccRCC metabolic network rather sug-
gested that these pathways were compromised. However, a detailed
review unveiled that these metabolic genes are complementary to

the ones found not expressed at the protein level in ccRCC. For
instance, the nucleotide metabolism-related genes, namely NME1,
NME1-NME2, NME2, and PKM2, are all part of ccRCC metabolic
network and compensate the lack of expression of NME4, NME5,
and NME6 at the protein level (Fig. 4B). The same can be con-
cluded for inositol metabolism, in which induction of PIK3C2B,
PIK3R3, and PIK3CD contrasts with low to null expression of
PI4KB, PI4K2A, and PI4K2B (SI Appendix, Fig. S23). Therefore, if
STAT1 was indeed activated in ccRCC, then together with VHL
loss it can explain most of the metabolic features that distinguished
ccRCC from any other cancer in this study.
The mechanisms for other features unique to ccRCC, such as

loss of gene redundancy in nucleotide and glycerolipid me-
tabolism as well as down-regulation of one-carbon metabolism,
still remained unsettled. Although this may be seen as part of
a general shift toward down-regulation that has related to mul-
tistep cancer transformation and suggestive of dedifferentiation
(29), we had previously ruled out a compelling role of the tissue
of origin in ccRCC metabolic reprogramming (Fig. 1A and SI
Appendix, Fig. S5). We therefore sought to identify whether
other genetic alterations may be implicated. Thus we analyzed
488 ccRCC samples and as many matched normal samples for
which CNVs were scanned using Affymetrix Genome-Wide SNP
Array 6.0 (SI Appendix, Dataset S2). We restricted our analysis
to those gene loci that overlap with the metabolic genes in HMR
and that displayed appreciable mean segment amplitude with
respect to the baseline (>±0.15) across at least 50% of the sam-
ples. Furthermore, all mean segments amplitudes that were not
found to be statistically different in the pool of ccRCC samples
against tumor-adjacent normal samples were discarded (P < 0.01,
Wilcoxon rank–sum test). In total, 108 metabolic genes were
deemed to be recurrently deleted (107) or amplified (1) in ccRCC
(SI Appendix, Fig. S31). Transcript and protein abundance for
each of these genes were checked in ccRCC against tumor-adjacent
normal samples, and 14 genes displayed a consistent trend with
the presumptive CNV (SI Appendix, Fig. S32 and Table S5).
Among these, abhydrolase domain containing 5 (ABDH5), choline
dehydrogenase (CHDH), glycerol-3-phosphate dehydrogenase
1-like (GPD1L), IMPDH2, and pyruvate dehydrogenase beta
(PDHB) are located within 3p14.3 and 3p22.3, a region that display
significant decrease in gene copy number in the range of 75–81%
of samples (Table 1). Reduced copy number for all these meta-
bolic genes may share the same mechanism that induces early loss
of VHL in ccRCC, being VHL located at 3p25.3. Only PDHB is
known to be indirectly inhibited after VHL loss, via HIF-dependent
expression of PDHK1, a PDH complex inhibitor (30). Remark-
ably, these deletions explain many defects previously unveiled in
ccRCC metabolic regulation: ABHD5 and GPD1L are involved
in glycerophospholipid metabolism; CHDH is implicated in one-
carbon metabolism; PDHB commits pyruvate in the TCA cycle;
and IMPDH2 is a key step in purine biosynthesis. Taken together,
these results are suggestive of a multistep model for ccRCC
metabolic reprogramming (Fig. 5): first, VHL loss in ccRCC ini-

Table 1. Potentially deleted genes according to copy number (CNV), transcript level (abundance [reads per kilobase per million reads
(RPKM)] and regulation [log2FC]), and median protein staining level in malignant and healthy renal tissue

Gene
Gene
locus

Mean CNV
amplitude

CNV
frequency (%) RPKM log2FC

Median staining
renal cancers

Staining kidney
cells in tubules Enzymatic activity

ABHD5 3p21.31 −0.236 81.15 2.69 −0.94 Negative Moderate 1-acylglycerol-3-phosphate
O-acyltransferase

CHDH 3p21.1 −0.227 78.28 9.54 −1.05 Negative Strong Choline dehydrogenase
GPD1L 3p22.3 −0.234 80.94 4.96 −0.83 Negative Moderate Glycerol-3-phosphate

dehydrogenase
IMPDH2 3p21.31 −0.236 81.15 8.19 −0.68 Negative Moderate IMP dehydrogenase
PDHB 3p14.3 −0.216 74.80 4.35 −1.30 Negative Strong Pyruvate dehydrogenase
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tiates an extensive transcriptional program that also represses pe-
ripheral metabolism (e.g., branched-chain amino acids metabolism);
then, recurrent loss of heterozygosity in 3p affects several adjacent
metabolic genes that implicate reduced redundancy in the ccRCC
metabolic network (e.g., impaired purine biosynthesis); finally,
transition to malignancy and a possible activation of STAT1 may
contribute to trigger adaptive mechanisms (e.g., regulation of one-
carbon and nucleotide metabolism).

Discussion
The increasing body of evidence that the same deregulated sig-
naling pathways that lead to the typical malignancy of cancer
cells converge in the regulation of cell metabolism has lately
gained attention for the possible implications in cancer therapy
(31). Moreover, this fact propelled the idea that oncogene-directed
metabolic reprogramming is a strict condition to support anabolic
growth and meet the metabolic requirements for proliferation in

any cancer cell (2, 5). However, the degree to which regulation of
such reprogramming is equated across different cancer cells at
the systems level has been largely overlooked. In this study, and
in remarkable concordance with the work by Hu et al. (6),
a systems analysis of the metabolic network revealed that cancer
cells orchestrate the expression of metabolic genes in a similar
fashion only when it comes to nucleotide, glutamate, and retinol
metabolism, while retaining the expression of a substantial por-
tion of metabolic genes unaltered with respect to their tissue of
origin. As a proof of concept, it has been recently appreciated that
sustained growth signaling via mTORC1, a pathway constitutively
active in most human cancers, directly controls de novo pyrimi-
dine biosynthetic flux (32, 33).
The fact that ccRCC has a radically different metabolic reg-

ulatory program at the systems level may therefore be important
not only for the rational design of therapeutic targets against this
particular neoplasm, but also to understand cancer metabolism

Fig. 5. An overview of the metabolic features unique to ccRCC in the landscape of cancer metabolic regulation. The figure shows reporter pathways
(represented by edges; refer to Fig. 2) and metabolites (represented by nodes; refer to SI Appendix, Fig. S16) transcriptionally regulated only in ccRCC vs.
matched tumor-adjacent normal tissue; and subnetworks (represented by rectangles) that feature lack of gene redundancy only in ccRCC metabolic network
(refer to Fig. 4A). The mechanisms that contribute to this metabolic phenotype are summarized. First, loss of VHL represses expression of metabolic genes in
alanine, aspartate, glutamate, and branched-chain amino acids metabolism. Second, potential activation of STAT1 up-regulates redundant genes in nucle-
otide biosynthesis and inositol metabolism. Third, loss of heterozygosity in metabolic genes adjacent to VHL affects several pathways previously identified as
down-regulated or deficient only in ccRCC (represented by double bar).
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in general. Recently a comprehensive characterization of ccRCC
unveiled an exceptional regulation of central carbon metabolism,
associated with altered promoter methylation patterns and
mutations in the PI(3)K/AKT pathway (16). Here we report
that peripheral regions of metabolism (e.g., nucleotide, one-
carbon, amino acid, and glycerolipid metabolism) are also
uniquely affected in ccRCC, and we provide evidence that this
divergence of ccRCC metabolic regulation can be ascribed to
recurrent loss of heterozygosity. Indeed, in line with the idea
that oncogenic pathways are implicated in the regulation of
cancer metabolism, we show that loss of VHL in the 3p chro-
mosome drives an initial reprogramming that matched exclu-
sively in the case of ccRCC. Accordingly, a recent study that
reconstructed a single tumor genetic phylogeny confirmed that
VHL deletion is the earliest event in ccRCC cancerogenesis (34).
Such reprogramming entails down-regulation of branched-chain
amino acid metabolism, fatty acid elongation, and alanine, as-
partate, and glutamate metabolism, the latter otherwise generally
up-regulated in most cancers. Thereafter, loss of heterozygosity in
key metabolic genes adjacent to VHL compromise nucleotide,
one-carbon, and inositol metabolism and glycerolipid biosynthesis.
In support of our conclusion, a study specifically aiming to map
deletions on 3p besides VHL in ccRCC tissue samples revealed
extensive loss of heterozygosity in gene loci within the chromo-
some, with remarkably higher frequency at a late tumor stage (35).
Such events therefore imply in ccRCC loss of gene redundancy in
a metabolic pathway, namely nucleotide metabolism, which is the
most frequently overexpressed in cancer (6). As such, considering
its essential role for cancer proliferation, such a finding paves the
way for potential synthetic lethality strategies. Intriguingly, ccRCC
cells seem to adapt to its defective network by up-regulating al-
ternative pathways, as in the case of betaine, where we find that
this adaptation may turn critical for the aggressiveness of the
disease. In addition, a potential activation of STAT1 transcription
factor was associated only with ccRCC. Such activation would
trigger up-regulation of complementary genes in nucleotide and
inositol metabolism, explaining the mixed regulation of the former
in ccRCC. Although STAT1 activation requires experimental
validation, this event may be linked to immune response (28) or to
treatment with interferon-α (36). Finally, we considered environ-
mental hypoxia and kidney cell dedifferentation as other potential
factors that may contribute to a different metabolic reprogram-
ming in ccRCC, but no compelling role could be demonstrated in
either case. In conclusion, there is evidence that ccRCC metabolic
regulation is uniquely shaped upon loss of heterozygosity in the 3p
chromosome, where VHL, the tumor suppressor gene most com-
monly associated to ccRCC, is located.
Finally, Hu et al. (6) reported that in the few cases in which

nucleotide biosynthesis was not up-regulated in cancer, the
overall metabolic gene expression was most down-regulated or
not changed. Indeed, here we found that ccRCC displays a sig-
nificant shift toward metabolic down-regulation, which translated
in the smallest metabolic network, and features a compromised
nucleotide metabolism. We therefore addressed this discrepancy
in ccRCC and propose that loss of heterozygosity may be in-
strumental in shaping the metabolic topology of these cancer
cells. As such, we also believe that these results reinforce the idea

that among all other cancers nucleotide biosynthesis is a crucially
altered pathway marked with increased activity.

Materials and Methods
Data. RNAseq profiles for primary tumor and matched tumor-adjacent nor-
mal tissues were obtained at The Cancer Genome Atlas (TCGA, tcga-data.nci.
nih.gov). Immunohistochemical protein profiles were retrieved at the Human
Protein Atlas (HPA version 11, www.proteinatlas.org). GEMs for a generic hu-
man cell (HMR3674, shortly HMR) and the kidney cell in tubules were down-
loaded from the Human Metabolic Atlas (www.metabolicatlas.com). Detailed
information is given in SI Appendix, SI Materials and Methods.

Cluster Analysis. PCA and hierarchical clustering (Pearson correlation metric,
average linkage), were performed on the basis of metabolic transcript
abundance profiles [measured in reads per kilobase per million reads (RPKM)]
or log2 metabolic gene expression fold-change against matched tumor-ad-
jacent normal samples focusing only on those genes included in HMR. MCA
was based on four categorical staining levels (strong, moderate, weak, and
negative) for metabolic gene encoded proteins. Detailed information is given
in SI Appendix, SI Materials and Methods.

Gene-Set Analysis.Multiple gene-set analyses were implemented using PIANO
R-package (19), and each gene set was defined as either the set of genes
constituting a pathway in HMR (reporter pathway), or as the set of genes
that encode for all reactions involving a certain metabolite in HMR (reporter
metabolites), or as the set of genes for which a peak was detected in any
ChIP-seq experiment, as collected in Cscan (37), targeting a certain tran-
scription factor (reporter transcription factors). For each directionality class
(up-, down-, or mixed regulated), the statistical significance returned is the
median significance reported by eight gene-set analysis methods. Then, the
most significant directionality class is reported. Detailed information is given
in SI Appendix, SI Materials and Methods.

Statistical Analysis. Details on the statistical tests reported in the text are
available in SI Appendix, SI Materials and Methods. For gene expression
differential analysis, cancer type-wise statistics were computed from empiri-
cal Bayes estimation and generalized linear models to fit a negative binomial
distribution on the read counts; patient-wise statistics were computed using
the rank–product test adjusted using the Bonferroni correction. Detailed in-
formation is given in SI Appendix, SI Materials and Methods.

Cancer GEMs Reconstruction. The reconstruction of cancer type-specific GEMs
was performed for breast, bladder, liver, lung, and renal cancer using the INIT
algorithm (21) within the RAVEN Toolbox (38). Scoring for evidence of
a reaction to be occurring was based on HPA protein profiles for each cancer
type. INIT reconstructs a GEM by maximizing the reaction score while pre-
serving network connectivity and functionality (i.e., the resulting GEM must
be able to perform a list of metabolic tasks, including biomass growth).
Detailed information is given in SI Appendix, SI Materials and Methods. All
cancer models are available through www.metabolicatlas.com.

CNV Analysis. SNP arrays for CNV analyses were obtained at TCGA for ccRCC
and matched tumor-adjacent normal samples, and segment amplitude across
each chromosome was calculated using the GADA R-package (39). Detailed
information is given in SI Appendix, SI Materials and Methods.

ACKNOWLEDGMENTS. We thank Amir Feizi, Rahul Kumar, Adil Mardinoglu,
Natapol Pornputtapong, Kaisa Thorell, Sergio Velasco, Leif Väremo, Rasmus
Ågren, and Tobias Österlund for discussion and computational support, and
Verena Siewers and Josè Luis Martinez for editing the article. The Cancer
Genome Atlas provided access and diffusion of restricted data. The compu-
tations were performed on resources provided by the Swedish National In-
frastructure for Computing at C3SE. This work was sponsored by the Knut
and Alice Wallenberg Foundation and the Chalmers Foundation.

1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: The next generation. Cell
144(5):646–674.

2. Ward PS, Thompson CB (2012) Metabolic reprogramming: A cancer hallmark even
Warburg did not anticipate. Cancer Cell 21(3):297–308.

3. Schulze A, Harris AL (2012) How cancer metabolism is tuned for proliferation and
vulnerable to disruption. Nature 491(7424):364–373, and erratum (2012) 494(7435):130.

4. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev
Cancer 11(2):85–95.

5. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg
effect: The metabolic requirements of cell proliferation. Science 324(5930):1029–1033.

6. Hu J, et al. (2013) Heterogeneity of tumor-induced gene expression changes in the
human metabolic network. Nat Biotechnol 31(6):522–529.

7. Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A, Saavedra E (2007)
Energy metabolism in tumor cells. FEBS J 274(6):1393–1418.

8. Mardinoglu A, Gatto F, Nielsen J (2013) Genome-scale modeling of human meta-
bolism—a systems biology approach. Biotechnol J 8(9):985–996.

9. Jerby L, Ruppin E (2012) Predicting drug targets and biomarkers of cancer via
genome-scale metabolic modeling. Clin Cancer Res 18(20):5572–5584.

10. Väremo L, Nookaew I, Nielsen J (2013) Novel insights into obesity and diabetes
through genome-scale metabolic modeling. Front Physiol 4:92.

E874 | www.pnas.org/cgi/doi/10.1073/pnas.1319196111 Gatto et al.

http://tcga-data.nci.nih.gov
http://tcga-data.nci.nih.gov
http://www.proteinatlas.org
http://www.metabolicatlas.com
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1319196111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1319196111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1319196111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1319196111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1319196111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1319196111/-/DCSupplemental/sapp.pdf
http://www.metabolicatlas.com
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1319196111/-/DCSupplemental/sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1319196111


11. Lewis NE, Abdel-Haleem AM (2013) The evolution of genome-scale models of cancer
metabolism. Front Physiol 4:237.

12. Lewis NE, Nagarajan H, Palsson BO (2012) Constraining the metabolic genotype-
phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol
10(4):291–305.

13. Frezza C, et al. (2011) Haem oxygenase is synthetically lethal with the tumour sup-
pressor fumarate hydratase. Nature 477(7363):225–228.

14. Folger O, et al. (2011) Predicting selective drug targets in cancer through metabolic
networks. Mol Syst Biol 7:501.

15. Mardinoglu A, et al. (2013) Integration of clinical data with a genome-scale metabolic
model of the human adipocyte. Mol Syst Biol 9:649.

16. Creighton CJ, et al. (2013) Comprehensive molecular characterization of clear cell
renal cell carcinoma. Nature 499(7456):43–49.

17. Yoshihara K, et al. (2013) Inferring tumour purity and stromal and immune cell ad-
mixture from expression data. Nat Commun 4:2612.

18. Patil KR, Nielsen J (2005) Uncovering transcriptional regulation of metabolism by
using metabolic network topology. Proc Natl Acad Sci USA 102(8):2685–2689.

19. Väremo L, Nielsen J, Nookaew I (2013) Enriching the gene set analysis of genome-
wide data by incorporating directionality of gene expression and combining statis-
tical hypotheses and methods. Nucleic Acids Res 41(8):4378–4391.

20. Ueland PM, Holm PI, Hustad S (2005) Betaine: A key modulator of one-carbon me-
tabolism and homocysteine status. Clin Chem Lab Med 43(10):1069–1075.

21. Agren R, et al. (2012) Reconstruction of genome-scale active metabolic networks for
69 human cell types and 16 cancer types using INIT. PLOS Comput Biol 8(5):e1002518.

22. Cohen HT, McGovern FJ (2005) Renal-cell carcinoma. N Engl J Med 353(23):2477–2490.
23. Kim WY, Kaelin WG (2004) Role of VHL gene mutation in human cancer. J Clin Oncol

22(24):4991–5004.
24. Vanharanta S, et al. (2013) Epigenetic expansion of VHL-HIF signal output drives

multiorgan metastasis in renal cancer. Nat Med 19(1):50–56.
25. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adap-

tation to hypoxia by actively downregulating mitochondrial oxygen consumption.
Cell Metab 3(3):187–197.

26. Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer
2(1):38–47.

27. Jiang Y, et al. (2003) Gene expression profiling in a renal cell carcinoma cell line:
Dissecting VHL and hypoxia-dependent pathways. Mol Cancer Res 1(6):453–462.

28. Dranoff G (2004) Cytokines in cancer pathogenesis and cancer therapy. Nat Rev
Cancer 4(1):11–22.

29. Danielsson F, et al. (2013) Majority of differentially expressed genes are down-reg-
ulated during malignant transformation in a four-stage model. Proc Natl Acad Sci
USA 110(17):6853–6858.

30. Jonasch E, et al. (2012) State of the science: an update on renal cell carcinoma. Mol
Cancer Res 10(7):859–880.

31. Cheong H, Lu C, Lindsten T, Thompson CB (2012) Therapeutic targets in cancer cell
metabolism and autophagy. Nat Biotechnol 30(7):671–678.

32. Robitaille AM, et al. (2013) Quantitative phosphoproteomics reveal mTORC1 activates
de novo pyrimidine synthesis. Science 339(6125):1320–1323.

33. Ben-Sahra I, Howell JJ, Asara JM, Manning BD (2013) Stimulation of de novo pyrimidine
synthesis by growth signaling through mTOR and S6K1. Science 339(6125):1323–1328.

34. Gerlinger M, et al. (2012) Intratumor heterogeneity and branched evolution revealed
by multiregion sequencing. N Engl J Med 366(10):883–892.

35. Singh RB, Amare Kadam PS (2011) Investigation of tumor suppressor genes apart
from VHL on 3p by deletion mapping in sporadic clear cell renal cell carcinoma (cRCC).
Urol Oncol 31(7):1333–1342.

36. Brinckmann A, et al. (2002) Interferon-alpha resistance in renal carcinoma cells is
associated with defective induction of signal transducer and activator of transcription
1 which can be restored by a supernatant of phorbol 12-myristate 13-acetate stim-
ulated peripheral blood mononuclear cells. Br J Cancer 86(3):449–455.

37. Zambelli F, Prazzoli GM, Pesole G, Pavesi G (2012) Cscan: Finding common regulators
of a set of genes by using a collection of genome-wide ChIP-seq datasets. Nucleic
Acids Res 40(Web Server issue):W510–W515.

38. Agren R, et al. (2013) The RAVEN toolbox and its use for generating a genome-
scale metabolic model for Penicillium chrysogenum. PLOS Comput Biol 9(3):
e1002980.

39. Pique-Regi R, Cáceres A, González JR (2010) R-Gada: A fast and flexible pipeline for
copy number analysis in association studies. BMC Bioinformatics 11:380.

Gatto et al. PNAS | Published online February 18, 2014 | E875

SY
ST

EM
S
BI
O
LO

G
Y

PN
A
S
PL

US



PAPER II 
 

Metabolic reprogramming resulting from oncogenic mutations converges 
in the deregulation of arachidonate and xenobiotics metabolism 

 
F. Gatto, A. Schulze, J. Nielsen 

 
Submitted for publication 

  



 



Metabolic reprogramming resulting from oncogenic mutations converges in the deregulation of 
arachidonate and xenobiotics metabolism 
F. Gatto1, A. Schulze2,3, J. Nielsen1,* 

Affiliations: 
1Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden. 
2Theodor-Boveri-Institute, Biocenter, Würzburg, Germany. 
3Comprehensive Cancer Center Mainfranken, Würzburg, Germany 

*Correspondence to:  nielsenj@chalmers.se 

SUMMARY 
Mutations stand at the basis of the clonal evolution of most cancers. Nevertheless, it is still elusive whether mutations induce 
a reprogramming of gene expression that results in the emergence of the hallmarks of cancer, regardless of the cancer type. 
Here we analysed the genome and transcriptome of 1,082 primary tumors and show that 12 common cancer mutations 
independently lead to the deregulation of genes with metabolic functions. From our analysis, we derived a network of 
reactions, termed AraX, that involve the glutathione- and oxygen-mediated metabolism of arachidonic acid and xenobiotics. 
Deregulation of AraX significantly correlated with all 12 mutations. We further show that, among all metabolic pathways, 
AraX deregulation represents the strongest predictor for patient survival. These findings suggest that oncogenic mutations 
drive a selection process that converges on deregulation of the AraX network to gain growth advantage during cancer 
evolution. 

 

Introduction 

Sequencing of an increasing number of cancer genomes 
has revealed the extent of genomic heterogeneity of the 
disease, which stems from a complex interplay of 
mutations and the natural selection of clones (Yates and 
Campbell, 2012). The complexity of the cancer genome is 
a daunting challenge for the rational treatment of the 
disease. While progress has been made in the attempt to 
tailor treatments to the defined molecular features of 
individual tumors, the need for ever more precise patient 
stratification provides a rational limit for these strategies 
(Chin et al., 2011). Moreover, the concept of convergent 
evolution in cancer could explain the acquisition of the 
cancer phenotype through multiple routes (Gerlinger et 
al., 2014; Hanahan and Weinberg, 2011; Weinberg, 
2014). 

Mutations are central in the evolution of most cancers 
and, once acquired, they are liabilities that cancers carry 
throughout their progression. In addition to direct effects 
on cellular signaling networks and the reprograming of 
gene expression, cancer mutations also initiate a process 
of natural selection, which results in the emergence of cell 
lineages exhibiting the transformed characteristic of 
cancer (Vogelstein et al., 2013). In the light of this, it is 
likely that the aggregate of molecular features of a given 
tumor, including the presence of a given mutation, is 
represented in its gene expression profile. In other words, 
it is conceivable to factorize the expression level of each 
gene as the contribution of different tumor features, and 

extract the contribution due to occurrence of a cancer 
mutation. In turn, common transcriptional changes 
attributable to different mutations, i.e. convergence 
towards a common set of deregulated genes, should 
correspond to the deregulation of key biological 
processes. These key processes are then selected for via 
mutagenesis and natural selection, and define the 
phenotype of cancer.  

Many studies have characterized the gene expression 
changes occurring due to prominent cancer-associated 
mutations in cell line and animal models (DeNicola et al., 
2011; Fodde et al., 1994; Johnson et al., 2001; 
Podsypanina et al., 1999; Sasaki et al., 2012). However, 
these mechanistic studies are technologically limited to 
focus on one or few cancer mutations in one or few 
cancer types. On the contrary, a systematic analysis can 
identify meaningful correlations, but it requires 
simultaneous knowledge of the presence of a cancer 
mutation and the levels of all transcripts in the same 
sample and in a sufficient large number of samples that 
span distinct cancer types. Examples of such pan-cancer 
studies have so far concentrated in the identification of 
biological processes putatively affected by cancer 
mutations and/or epigenetic alterations, without taking in 
account the underlying changes in gene expression 
(Ciriello et al., 2013; Hofree et al., 2013; Kandoth et al., 
2013). Here we have used genomic and transcriptomic 
data from 1,082 human tumor samples across 13 cancer 
types to derive genome-wide correlations between cancer 
mutations and transcript levels in human primary tumors. 
These associations were used to investigate whether 



different mutations converge in the transcriptional 
regulation of defined biological processes. These 
processes are likely to represent cellular functions that are 
critical for positive selection during cancer evolution. 

Results 
Definition of the factors that contribute to gene 
expression changes in cancer using generalized linear 
models  

We first sought to test the existence of a 
statistical association between gene expression changes 
and the presence of a cancer-associated mutation in the 
tumor, i.e. if occurrence of a mutation correlates with an 
increase or decrease in the mRNA abundance of a gene. 
RNA-seq profiles for 1,082 primary tumor samples were 
retrieved from 13 distinct cancer types (range of 21-199 
samples per type, Fig. S1) for which a validated mutation 
spectrum was available (Cerami et al., 2012) (Fig. 1A). In 
this cohort, we focused on the 158 genes mutated at 
moderate frequency (>2% samples), of which 12 are 
mutated at high frequency (>10% samples, Fig. S2). We 
hypothesized that the level of gene expression could be 
factorized as the contribution of four sample features: the 
histopathological cancer type; the expression level of 
transcription factors; the presence or absence of a 
mutation; and the synergy induced by occurrence of a 
mutation in a particular cancer type. We therefore 
employed the established statistical framework of 
generalized linear models (GLM) to perform a linear 
regression of gene expression on the following factors: 
the 13 cancer types (CT); the activation status of 119 
well-characterized transcription factors (TFs) (Zambelli et 
al., 2012); the presence or absence of a mutation in one of 
the 158 genes for which mutations were found at 
moderate frequency (Muts); and the interaction terms 
between the presence of a high frequency mutation and 
the cancer type where it occurred (Ints) (Fig. 1B). This 
generated an initial GLM (All), which comprised 416 
factors.  

Likely, many of these factors do not contribute 
significantly to explain the expression level of a gene. 
Hence, we employed different methods for model 
selection, including backward selection and regularized 

regression via the Lasso algorithm (Tibshirani, 1996). 
These methods identify a minimal number of relevant 
factors while maintaining an acceptable accuracy of 
prediction of the observed gene expression levels. Each 
method thus returned a set of relevant factors that 
constitute an alternative GLM to the initial All model 
(Fig. 1B). In total, we generated 17 GLMs: a backward 
selection (BS) model (yielding 84 factors); three Lasso 
models (lasso1, lasso5, lasso10), depending on the 
number of factors with a non-null regression coefficient in 
1%, 5%, or 10% of all genes (yielding 328, 101, and 59 
factors respectively); and 13 models solely based on a 
subset of the four sample features (i.e. only CT, or only 
TFs, or only Muts, or only Ints factors, or any other 
combination of these). The goodness-of-fit between 
observed and predicted expression level for each gene is 
dependent on the GLM used. The best GLM was selected 
by counting for each GLM the number of genes whose 
expression was accurately predicted (i.e. an acceptable 
goodness-of-fit), while relying on the least number of 
factors. A quality measure of this trade-off is the Akaike 
information criterion, AIC, where low AIC values are 
indicative of good quality. Using each GLM, we 
calculated the AIC values for each gene (Fig. 2A). The 
best distribution of AIC values was achieved by applying 
the BS model compared to any of the other GLMs (Fig. 
2A). The conditional probability that a particular GLM 
performs better in the prediction of the expression level of 
a given gene can also be derived by directly comparing 
the AIC values of the alternative GLMs in the form of 
AIC weights (Wagenmakers and Farrell, 2004). The 
number of genes for which the BS model generated the 
highest probability of predicting the expression more 
accurately than the other GLMs was 7320, followed by 
the lasso10 model (5999) and the GLM in which only 
cancer type factors were used (onlyCT, 4295) (Fig. 2B). 
Overall, the goodness-of-fit between observed vs. 
predicted gene expression levels across all 1,082 samples 
using the BS model generated a Pearson correlation 
coefficient R = 0.963 (Fig. 2C). Considering these results, 
we adopted the BS model to test for associations between 
gene expression and cancer mutations. 

 



 

Fig. 1. Workflow used to derive statistical associations between gene 
expression changes and cancer mutations. (A) Input data for the study 
were collected from 1,082 patients for which clinical, mutation, and 
gene expression level data were simultaneously generated. LUSC: Lung 
squamous cell carcinoma. (B) The observed level of gene expression 
was correlated to clinical and mutation data by deriving alternative 
generalized linear models (GLMs). Each GLM factorizes the 
contribution of predefined factors to the expression level of a given gene 
(e.g. ABCC1) as a linear regression, where coefficients are estimated by 
fitting the observed gene expression level in the 1,082 samples. Each 
GLM predicts an expected value for the expression level of a gene in a 
sample given the factor values for that sample (e.g. if the sample is 
LUSC, the GLM adds a contribution equal to its estimated coefficient, 
β1). (C) Model selection is performed to decide which GLM returns the 
best predictions while using a minimal number of factors. (D) The 
predicted expression is net sum of positive and negative factors as 
determined by the model. As example, expression of ABCC1 is 
positively affected by a cancer type factor (LUSC, green bar) and a 
mutation in NFE2L2 (red bar) but negatively affected by an interaction 
term, the context specific mutation of MUC17 in LUSC (yellow bar). 
(E) The significance of each factor can be tested using a threshold for 
the moderated t-statistics and for the minimum expression fold-change. 
The factors representing mutations can hereby be associated with gene 
expression changes. For example, a mutation in NFE2L2 showed a 
significant statistical association with expression changes in ABCC1 
(green line). Associations identified in this manner were used to derive 
networks of deregulated biological processes that are independently 
associated with cancer mutations.  

Fig. 2. Model selection according to the minimum Akaike information 
criterion (AIC) reveals that the backward selection (BS) model is better 
at fitting gene expression across samples than the alternative GLMs. (A) 
Boxplot of AIC values (one for each gene) using alternative GLMs. 
Key: BS – Backward selection model (84 factors); lasso1 – Lasso non 
null factors in >1% of all genes (328 factors); lasso5 – Lasso non null 
factors in at least >5% of all genes (101 factors); lasso10 – Lasso non 
null factors in >10% of all genes (59 factors); CT – Cancer type factors 
(13 factors); TFs – Transcription factor expression level factors (120 
factors); Muts – Presence of a mutation factors (158 factors); Ints – 
Interaction term between presence of a mutation and cancer type (126 
factors); All – All factors (416 factors). (B) Number of genes whose 
expression is best explained by one of the alternative GLMs based on 
AIC weights.  (C) Correlation between observed and predicted gene 
expression levels using the BS model. Bluer contours define areas with 
increasing density of points. 
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We also sought to validate whether the genes 
found here to be associated with one of the 12 mutations 
actually change their expression when the mutation is 
present. To this end we used 189 experimentally derived 
gene-sets, each representing genes whose expression is 
altered in response to perturbation in a key cancer-
associated gene (Subramanian et al., 2005). We then 
performed a gene-set analysis for each mutation in order 
to evaluate if the genes found to be associated with it are 
enriched in any of these 189 gene-sets. We observed an 
overall high consistency between the direction of 
regulation of the genes found here to be associated with a 
given mutation and the corresponding experimentally 
derived gene-set (Fig. S5). For example, genes here found 
to be down-regulated when TP53 is mutated significantly 
enriched the P53_DN.V1_DN gene-set, which features 
genes down-regulated in cell lines from the NCI-60 panel 
with mutated TP53. Taken together, these results suggest 
that the 12 cancer mutations identified as factors in the BS 
model are each linked to defined gene expression changes 
that encompass all tumors bearing the mutation, and are 
not attributable to a specific cancer type. 

Convergence of mutation-associated gene expression 
changes in the regulation of metabolism 

Next, we were interested in elucidating if the 
genes associated with each mutation are involved in 
specific biological processes. In particular, we expected 
that the 12 mutations associate independently with 
processes linked to important cancer-relevant phenotypes, 
known as the hallmarks of cancer (Hanahan and 

Weinberg, 2011). Convergence on any of these processes 
would provide strong evidence that cancer mutations 
drive the selection of clones that feature properties 
reflecting these hallmarks. Hence, we checked if the 
genes associated with the 12 mutations are enriched in 
any particular biological process, each represented by a 
distinct Gene Ontology (GO) term. We employed 
consensus gene-set analysis using Piano (Varemo et al., 
2013), which revealed a diverse number of GO biological 
processes that are significantly associated with each of the 
examined mutations (FDR < 0.01, Fig. S6). However, 
contrary to the premises, only a small number of GO 
biological processes simultaneously associated with more 
than one mutation (Fig. 3). We further classified these 
processes with highly significant convergence (p < 0.01) 
according to the 24 ancestor categories they are assigned 
to within the GO hierarchy. Hereby we observed an over-
representation of the GO categories metabolism, immune 
system processes, response to stimulus and multi-
organism process. Intriguingly, metabolism is the GO 
category with the most robust convergence measured in 
terms of stable overrepresentation when more stringent 
criteria for convergence are enforced, followed by 
immune system processes (Fig. S7). Taken together, these 
results suggest that the presence of each of these 12 
mutations entails a diverse spectrum of gene expression 
changes in terms of biological processes that are affected, 
but that the reprogramming induced by these mutations 
converges in the deregulation of metabolism and immune 
system processes 

Fig. 3. Mutations converge on the regulation of GO biological processes that relate primarily to metabolism and immune system processes. Each row 
indicates a GO term that is enriched in the up- (red) or down- (blue) regulated genes associated with each mutation (column) in the consensus gene-set 
analysis. GO terms are classified according to the ancestor GO category and sorted by the significance of the convergence (barplot on the right). 
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Mutation-associated gene expression changes converge 
on a sub-network of metabolic reactions 

Metabolism appeared to be the biological 
process that displayed the largest extent of regulation 
associated with the 12 mutations. Indeed, mutations in 
cancer genes have been recognized to deregulate 
metabolism to meet the metabolic requirements of rapid 
proliferation and allow cancer cells to adapt to the 
microenvironment (Cairns et al., 2011; Schulze and 
Harris, 2013). Others and we have previously found that 
distinct cancer types featured some common gene 
expression changes in metabolism compared to their 
matched normal tissues, and these common changes were 
primarily ascribed to altered nucleotide biosynthesis 
(Gatto et al., 2014; Hu et al., 2013; Nilsson et al., 2014). 
However, these studies could not distinguish whether the 
observed changes are attributable to a common adaptation 
process during cancer progression or are rather the 
consequence of a specific mutation event. To interrogate 
this, we selected among the genes here associated with 12 
mutations those that overlapped with the 3765 genes that 
participate in the human metabolic network (Mardinoglu 
et al., 2014). This set corresponds to 525 metabolic genes, 
each associated with the presence of at least one of the 12 
mutations.  

The network of associations between a mutation 
and deregulated metabolic genes revealed a number of 
genes on which multiple mutations converge (Fig. 4A and 
S8). However, no metabolic gene showed convergent 
association with all mutations, nor was there a canonical 
metabolic process to which all mutations are associated 
(Fig. 3). We therefore tested the hypothesis that mutations 
collectively associate with metabolic genes encoding for a 
common yet non-canonical sub-network of reactions. We 
first mapped for each reaction in the human metabolic 
reaction network the number of mutations that converge 
on it, through the association with the underlying 
reaction-coding gene(s) (Fig. 4B). This highlighted 
distinct clusters of reactions within the metabolic 
network. To extract the largest functional cluster, we 
searched for a connected sub-network of reactions in 
which the number of converging mutations is maximized 
by using the jActiveNetworks algorithm (Ideker et al., 
2002). This approach returned a single high-convergence 
reaction sub-network (Fig. 4C). We characterized this 
sub-network by determining whether its nodes 
significantly enrich any pathway and/or metabolite 
compared to the background human metabolic network. 
We uncovered that the sub-network featured an over-
representation of the metabolism of xenobiotics and 
polyunsaturated very long-chain fatty acids (Fig. 4D). In 
addition, individual metabolites, such as glutathione, 
oxygen, and arachidonic acid, were also over-represented 
within the sub-network (Fig. 4D). Collectively, these 

findings suggest that a sub-network of reactions that 
connects arachidonic acid and xenobiotics via glutathione 
and oxygen is associated independently with 12 frequent 
mutations in cancer.  

Curation of the high-convergence sub-network of 
metabolic reactions: AraX 

Starting from the high-convergence reaction sub-
network, we manually curated a representation of the 
candidate pathway that best represents these reactions 
according to the literature. We termed this pathway AraX 
(Fig. 5), for arachidonic acid and xenobiotic metabolism. 
The AraX pathway is encoded by 101 metabolic genes. It 
contains 23% of all mutation-metabolic gene associations. 
One branch of the AraX pathway comprises reactions that 
control the availability of arachidonic acid and catalyze its 
conversion to eicosanoids (34 genes). The second branch 
facilitates the detoxification of xenobiotics (41 genes). 
Importantly, nine enzymes encoded by the genes 
associated with this pathway are involved in both 
branches (e.g. CYP2C8). In addition, there are 5 
transporters that can secrete the end products of the 
pathway (Fig. 5). The main co-substrates for arachidonic 
acid and xenobiotic metabolism are oxygen and 
glutathione, whose levels are controlled by the remaining 
21 genes. The overrepresentation of xenobiotics 
metabolism with cancer mutations was unexpected, 
considering that the samples used for this study were 
derived from untreated tumors. The importance of AraX 
in cancer may reside in its individual components, some 
of which have established roles in cancer initiation and 
progression. Aberrant arachidonic acid metabolism 
regulates processes critical for cancer progression, mainly 
by establishing a tumor-supporting microenvironment 
where immune cells and endothelial cells are recruited to 
produce mitogens, pro-inflammatory cytokines, and 
angiogenic factors (Wang and Dubois, 2010). Enzymes 
within the xenobiotics metabolism form reactive 
intermediates from exogenous and endogenous substrates 
that can cause cancer initiation, potentially by promoting 
genotoxicity (Nebert and Dalton, 2006). Both pathways 
are a primary source of cytosolic reactive oxygen species, 
which exhibit a characteristically abnormal concentration 
in many types of cancer cells (Trachootham et al., 2009). 
Finally, a number of xenobiotic-metabolizing enzymes 
and transporters in AraX confer cancer cells with 
mechanisms of detoxification and drug-resistance 
(Fletcher et al., 2010b). Taken together, this suggests that 
AraX is implicated in a number of host-cancer 
interactions that result in pro-tumorigenic functions. We 
also confirmed that compared to all 186 KEGG metabolic 
pathways AraX is, on average, the most significantly 
enriched pathway by the genes associated with a mutation 
(odds ratio, 12.07; 95% bootstrap confidence interval 
[CI], 4.75 to 17.66); Fig. S9), followed by xenobiotics 
metabolism by cytochrome P450 (odds ratio, 5.72; 95% 



bootstrap CI, 1.04 to 8.90). Remarkably, similar results 
were obtained when AraX was compared to the 674 
Reactome pathways, which also include signaling 

pathways that should be highly deregulated in human 
cancer and that include non metabolic genes, upon which 
AraX could not be constructed (Fig. S10). 

 

 
Fig. 4. The network of associations between cancer mutations and metabolic genes reveals a region of high convergence in which genes encode for a 
metabolic sub-network revolving around arachidonic acid and xenobiotics. (A) Circos plot where cancer mutations are connected to metabolic genes if a 
statistical association was found (high resolution in Fig. S8). Metabolic genes are sorted counter-clockwise according to the number of links (i.e. the number 
of mutation-metabolic gene associations). Bars indicate the number of mutations that are converging to a particular gene. Black entries in the outer circle 
indicate genes belonging to AraX (introduced in Fig. 5). (B) The human metabolic reaction network where each node is a reaction and the blue gradient 
indicates the number of mutations converging to it via association with any reaction-encoding gene. (C) Extraction of the sub-network where the number of 
converging mutation-driven transcriptional changes are maximized. (D) Characterization of the sub-network in terms of over-represented pathways (top) and 
metabolites (bottom) compared to the background human metabolic network. 



 

Overall, this finding suggests that deregulation of a 
network of metabolic reactions connected to arachidonic 
acid and xenobiotics metabolism and mediated by 

glutathione and oxygen is advantageous in cancer, since 
12 frequent mutations independently entail transcriptional 
changes that converge on this pathway. 

Fig. 5. A literature curated sub-network of reactions that revolves around arachidonic acid and xenobiotic metabolism (AraX) shows convergence by 
multiple cancer mutations. The boxes next to each gene indicate which mutations are associated with it. 

 

Deregulation of AraX in cancer is the strongest 
predictor of survival among metabolic pathways 

Next, we sought to investigate the implication of 
the convergence on AraX in cancer. We observed no 
obvious pattern in the direction of the regulation of AraX 
by the different mutations. Instead, we found a mutation-
specific modulation in the expression of AraX genes, with 
varying degrees of overlap (Fig. S11). This poses a 
challenge when devising an intervention strategy to 
normalize the expression or activity of the AraX pathway 
aimed at halting cancer progression. On the other hand, 
this also suggests that a generic deviance (i.e. 
deregulation) in the expression of AraX is likely to confer 
a selective advantage in cancer, regardless of the disease 
type. Hence, we estimated a deregulation score for the 
AraX pathway in each tumor sample using Pathifier 
(Drier et al., 2013). This score captures the extent to 
which the expression of a pathway in a tumor sample 
deviates from its expression in the normal tissue of origin 
(Fig. S12). Then we sought to verify whether the extent of 
AraX deregulation in the tumor is predictive of an 
independent measure of selective advantage, as 
determined by patient’s survival. Survival analysis for a 
subset of 783 samples, for which reference normal 
samples were available, revealed that tumors with a “low” 

deregulation score, i.e. with an expression level of the 
AraX pathway similar to that of normal tissue from which 
the cancers originate, have significantly better prognosis 
than tumors with a “high” deregulation score. Tumors 
with a very high deregulation score showed the worst 
prognosis (p = 8e-6, Fig. 6). Compared to the 186 KEGG 
metabolic pathways, the deregulation of AraX ranks as 
the best predictor for survival, as estimated by a Lasso 
penalized Cox proportional hazard model (Fig. S13). At 
the optimal penalty value (log-λ = -2.6), only four KEGG 
pathways are predictive of survival, with AraX providing 
the most robust result (log-hazard ratio per unit of 
deregulation score, 0.39). Taken together, the strong 
association of AraX deregulation with poor prognosis 
suggests that aberrant expression of this pathway confers 
a stronger selective advantage for cancer progression 
compared to other metabolic processes. 

Discussion 

Cancer cells exhibit heterogeneous combinations of 
genetic alterations that are the result of a process of 
natural selection. Through this process, cancer cells 
deregulate critical biological functions to establish the 
hallmarks of the transformed phenotype (Vogelstein et al., 
2013). The concept of convergent evolution in cancer 
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implies that different genetic alterations can result in 
functionally similar outputs, which are likely to reflect an 

evolutionary advantage for the cancer cells with respect to 
their microenvironment (Gerlinger et al., 2014).  
 

 
Fig. 6. Kaplan-Meier survival plots for the subset of 783 tumor samples, for which reference normal samples were available, classified with very high (black 
line), high (dark blue) or low (light blue) deregulation score in the AraX pathway. 
 

In this study, we uncovered one such node of 
convergence, a metabolic pathway that we termed AraX. 
Encoded by 101 genes, AraX is a network of metabolic 
reactions that revolve around the metabolism of 
arachidonic acid and xenobiotics mediated by oxygen and 
glutathione. We demonstrate that 12 frequent cancer 
mutations converge in a significant association with 
transcriptional deregulation of AraX, more than with any 
other metabolic or biological pathway. This convergence 
is striking in that it occurs regardless of the cancer type 
and independent of the expression of a number of 
transcription factors.  

Intriguingly, the fact that AraX is a transcriptionally 
regulated pathway of oxygen-consuming reactions could 
reflect a strategy by which cancer cells adapt to tumor 
hypoxia by regulating oxygen-dependent enzymes to 
compensate for reduced oxygen availability. Cancer 
mutations select independently for the deregulation of this 
pathway, potentially under the selective pressure of 
hypoxia. Hence, we speculate that an effective strategy to 
arrest cancer evolution could be represented by 
modulating the activity of the AraX pathway, potentially 
using a multi-targeted approach rather than selective 
inhibition of individual components, a strategy also 
advocated by network pharmacology (Hopkins, 2008).  

 

Experimental procedures 

Data and analyses used in this study are deposited in 
Synapse (ID: syn3163200). 
 
Data retrieval. RNAseq gene expression profiles and 
clinical data for 1,082 primary tumor samples 
encompassing 13 cancer types (BLCA – Bladder 
adenocarcinoma, BRCA – Breast carcinoma, COAD – 
Colon adenocarcinoma, GBM – Glioblastoma 
multiforme, HNSC – Head and neck squamous cell 
carcinoma, KIRC – Clear cell renal cell carcinoma, LGG 
– Low grade glioma, LUAD – Lung adenocarcinoma, 
LUSC – Lung squamous cell carcinoma, OV – Ovarian 
carcinoma, READ - Rectum adenocarcinoma, PAAD – 
Pancreatic adenocarcinoma, UCEC – Uterine corpus 
endometrial carcinoma) were downloaded from the 
Cancer Genome Atlas (TCGA) in November 2013. At 
least 20 samples per cancer type were required to be 
included in this cohort. Mutation profiles for the same 
samples were obtained from the cBioPortal (Gao et al., 
2013). 
 
Differential gene expression analysis. RNAseq-
generated read count tables were used to estimate gene 
expression in each sample in the pan-cancer cohort. To 
this end, we adopted voom, an approach that extends the 
generalized linear model (GLM) for microarray gene 
expression signals to analyze count-based expression data 
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(Law et al., 2013). The gene-wise count variance is 
calculated from the linear regression of gene-wise 
observed log-counts across all samples in the cohort 
according to a number of factors as the gene-wise residual 
standard deviation of the regression. If a lowess curve is 
fitted to square-root residual standard deviation as a 
function of mean log-counts, it is possible to predict the 
square-root standard deviation of each observation (i.e. 
log-counts for a given gene in a given sample) from the 
fitted log-count of that observation according to the linear 
regression (i.e. the mean-variance trend). Differential 
gene expression analysis for each factor is then performed 
using the standard linear modeling procedure proposed by 
limma (Smyth, 2004), with the addition that the log-
counts-per-million of each observation are corrected using 
the predicted variance as an inverse weight. Even if voom 
assumes that each observation is normally distributed, this 
method proved to outperform count-based approaches in 
differential expression analysis comparison studies 
(Rapaport et al., 2013). The significance of each factor in 
the regression of the expression of each gene is then 
tested using moderated t-statistics. So generated p-values 
were corrected for multiple testing by controlling the false 
discovery rate (FDR) across genes using the Benjamini 
and Hochberg correction and by adopting the nestedF 
correction across contrasts. A factor is deemed significant 
in the regression of the expression of a gene if it is 
associated to at least 50% fold change (|log-FC| > 1.5) 
with a FDR < 0.01. 
 
Model selection. In order to perform the differential gene 
expression analysis above, it is required to define the 
factors for the regression. These factors are devoted to 
explain the biological variability of gene-wise counts 
across the samples in the pan-cancer cohort. They should 
capture the main contributions and some smaller 
contributions interesting to our investigation. Hence we 
tentatively selected the following factors for an initial 
design (All): 

• The cancer types, i.e. the belonging to a 
histopathologically defined cancer type among 
the 13 types in the cohort; 

• The mutation status of 158 cancer-associated 
genes. An initial list of 260 genes was generated 
by merging the Cancer5000 and Cancer5000-S 
lists in (Lawrence et al., 2014). We excluded 
HIST1H3B, HIST1H4E, and MLL4, which could 
not be uniquely mapped using the Ensembl v.73 
annotation. Furthermore, 102 genes that were not 
mutated at moderate frequency in the cohort 
(>2%) were also excluded. 

• The activation status of 119 well-characterized 
transcription factors (Zambelli et al., 2012), 
defined by the belonging to a certain quintile of 
expression in the pan-cancer cohort. 

• The interaction terms between a cancer type and 
a cancer-associated gene mutated at high 
frequency. These are defined as the 12 mutations 
with a frequency >10% across the pan-cancer 
cohort. There are 126 such interaction terms, 
excluding those linearly dependent on the other 
factors. These factors take in account cancer 
type-dependent contributions of mutations. 

Using the same notation (where appropriate) as in voom, 
the GLM (1) is: 
 
(1)  ! !!,! = !!,! = !! + !!!!! 
 
where !!,! is the log-counts per million (log-cpm) value 
for gene g in sample i, !!,! is the expected value, !! is the 
vector of covariate values in sample i, !! is the 
(unknown) vector of coefficients representing the 
contribution of each covariate on the expected value, and 
!! is the explicitly formulated intercept of the GLM. In 
our formulation, the All model (2) becomes:  
 
(2)  !!,! = !! + !! + !!!"#!$%&'()%*

!!! +!"#!$%&'()!"#$%&
!!!

!!!"#$!%&#'()'*!+$&)*#%
!!! + !!!"!#$%&'#()!*

!!!
!!! 

 
where xm is a binary value {0,1} indicating the absence or 
presence of mutation m in the sample i; xt is a binary 
value {0,1} indicating the belonging of sample i to the 
cancer type t; xf is a ternary value {-1,0,1} indicating 
whether the expression of transcription factor f in sample i 
is in the bottom quintile, 2nd to 4th quintile, or top quintile 
with respect to the distribution of its expression values in 
the pan-cancer cohort; and xI is a binary value {0,1} 
indicating whether there is the interaction I between the 
cancer type to which sample i belongs and a frequently 
mutated gene.  
We excluded the following observations from this study: 

1. All genes that have ambiguous annotation in 
Ensembl v73. This set corresponds to 565 genes.  

2. All genes that were not detected in any sample. 
A gene is detected if at least 10 counts were 
reported in 10% of the samples. Although the 
opposite may occur due to an actual repression 
of the gene, this signal cannot be distinguished 
from genes that are misannotated or, more likely, 
from genes whose transcripts cannot be detected 
due to technical limitation in the sensitivity of 
the sequencing instrument. These observations 
do not add any information on the expression 
status of the (presumptive) gene and thus their 
removal will not alter the result of downstream 
analyses. This set corresponds to 1075 genes. 

Overall, 1575 genes were excluded from the initial set of 
20,531 genes (65 overlapped between the above 
mentioned filtered sets), yielding a total of 18,956 genes 
analyzed. 



 
Many factors in the All model are unlikely to contribute in 
explaining the expression of most genes, thereby 
increasing the risk of over-fitting. We adopted two 
different model selection methods to derive the most 
relevant factors while using a minimal number of factors. 
First, backward selection (Yan and Su, 2009) was used to 
exclude, at each iteration, the factor that is associated with 
the least number of differentially expressed genes. The 
procedure was stopped once the number of differentially 
expressed genes was greater than 1% of all genes (i.e. 190 
genes). The resulting GLM contains 84 factors (BS 
design). Second, we used L1-constrained regression 
shrinkage using the Lasso algorithm (Tibshirani, 1996) to 
compute, for each gene, the factors in the All model with 
a non-null coefficient. The penalty value used for the 
Lasso regression was calculated such that the mean 10-
fold cross-validated error is minimum. The Lasso method 
was implented using the R-package glmnet (Friedman et 
al., 2010). We constructed three GLMs based on the 
factors with a non-null coefficient in at least 1%, 5%, or 
10% of all genes (lasso1, lasso5, and lasso10). Finally, 
we constructed alternative GLMs that feature either only 
the cancer type (CT) or the transcription factor levels (TF) 
or the mutation statuses (Muts) or the interactions (Ints) 
factors, or any other combination of these classes. The 
best GLM was evaluated by first calculating the Akaike 
information criterion (AIC) values for the goodness-of-fit 
of all genes by each GLM. This criterion was chosen for 
its ability to capture the trade-off between the goodness of 
fit and the number of factors utilized in the regression of 
the expression of a gene (for each GLM, there is an AIC 
value per gene). We next computed, for each gene, the 
difference between the AIC value returned by the current 
GLM and the minimum AIC value observed using any 
GLM. From this, we calculated the AIC weight of the 
alternative GLMs in the regression of each gene. The AIC 
weights were transformed into probabilities that a certain 
GLM is the most likely to explain the expression of that 
gene. Finally, we counted for each GLM the number of 
genes whose expression is best explained by that GLM. 
The model selection was implemented in R 3.1.2. 
 
Gene-set analyses. The gene-set analyses were 
performed using the R-package Piano (Varemo et al., 
2013). In all analyses, we evaluated the significance of a 
gene-set using the genes found here to be associated with 
a mutation (here on mutation-associated genes). For each 
mutation, the list of mutation-associated genes is 
generated using the differentially gene expression analysis 
based on the BS model (see Differential gene expression 
analysis). In the case of enrichment of the 189 gene-sets 
representing each a genetic perturbation in a key cancer-
associated gene [retrieved from the Molecular Signatures 
Database (MSigDB) (Subramanian et al., 2005)], the 
significance of a gene-set was tested using the Fisher’s 

test, and the p-values were controlled for multiple testing 
by transformation to FDR using the Benjamini and 
Hochberg correction. To check for consistency between 
the genetic perturbation represented by a gene-set and the 
expected effect on gene expression by a mutation, we 
compared separately the top five ranked gene-sets (if 
significant, i.e. gene-set FDR < 0.01) mostly associated 
with up-regulated or down-regulated genes (in Piano, so 
called “mixed directional” classes). For example, genes 
here found up-regulated when APC is mutated are 
significantly associated with the 
BCAT_BILD_ET_AL_UP gene-set, in which β-catenin 
(BCAT), a direct target of APC, was over-expressed in 
primary epithelial breast cancer cell. 
In the case of enrichment of GO biological processes, 
8255 gene-sets were retrieved using the R-package 
biomaRt (Durinck et al., 2009). The significance of a 
gene-set was tested using the consensus between six tests 
(Fisher’s test, Stouffer’s test, Reporter test, Tail strength 
test, mean, and median), and the p-values were controlled 
for multiple testing by transformation to FDR using the 
Benjamini and Hochberg correction. If gene-set FDR < 
0.01, the underlying biological process is deemed 
significantly associated with the mutation. To compute 
the probability that multiple mutations are simultaneously 
associated with a gene-set, we designed a permutation test 
in which the gene-sets significantly associated with a 
mutation are randomly permuted 10’000 times. Then, we 
calculated a p-value as the frequency at which a gene-set 
is randomly associated with a number of mutations 
greater or equal to that observed prior randomization. 
Next, we computed using the Fisher’ Exact Test which 
ancestor GO category (defined as the children of the GO 
term biological process) were overrepresented by the GO 
terms that showed significant convergence. Finally, we 
estimated the robustness of the supposed 
overrepresentation of a primary GO biological processes 
repeating this above operation using only those GO terms 
that showed convergence by an increasing number of 
mutations.  
 
Extraction of the high-convergence reaction sub-
network. The human genome-scale metabolic model 
HMR2 was downloaded from 
http://www.metabolicatlas.com/. We generated a reaction 
network from the model where reactions are nodes, and 
an edge links two nodes if there is at least one metabolite 
shared by the two reactions. We excluded 18 metabolites 
with exceptionally high degree (>200) to prevent a 
combinatorial explosion of reaction-reaction edges. Then, 
we used the jActiveNetwork algorithm (Ideker et al., 
2002) to extract from this reaction network a connected 
sub-network that maximizes the number of mutations 
converging to it.  To this end, we counted for each 
reaction the number of times that any mutation is found 
associated with a gene encoding that reaction. Each 



reaction of the network was then scored using this count. 
We subtracted a penalty equal to 3 to the score to ensure 
that the extracted sub-network was reasonably small yet 
comprised as many reactions with at least 2 mutations 
converging to them. Artificial reactions introduced in 
HMR2 for modeling purposes (defined by the HMR2 sub-
systems Isolated, Artificial reactions, Exchange reactions, 
Pool reactions) were further penalized with a score of -
100. The search was implemented using the R-package 
BioNet (Beisser et al., 2010). The returned high-
convergence reaction sub-network contained 389 
reactions (nodes) out of the 8184 reactions that were 
present in the reaction network. 
 
Analysis of the high-convergence reaction sub-
network. We characterized the high-convergence reaction 
sub-network by comparing the frequency of metabolites 
and pathways represented by the reactions in the sub-
network to the background frequency in HMR2. The 
overrepresentation of metabolites and pathways was 
calculated using the Fisher’s Exact Test. To further aid 
the interpretation of the reactions part of the high-
convergence reaction sub-network, this was broken down 
in reaction clusters, defined as sets of reactions that share 
the same gene-reaction association. These are returned by 
applying unsupervised hierarchical clustering to the gene-
reaction association matrix in HMR2 limited to include 
the reactions in the high-convergence reaction sub-
network and the genes associated with at least one 
mutation. This operation reduced the complexity of the 
high-convergence reaction sub-network to 57 reaction 
clusters. 

Curation of the high-convergence reaction sub-
network. Starting from the above analysis, we consulted 
the literature to frame the high-convergence reaction sub-
network in the context of well-defined metabolic 
functions and reconstruct a comprehensive pathway. Also, 
we manually reviewed every metabolic gene associated 
with at least one mutation and verified if there exist a 
relation with the emerging pathway. We initially focused 
on arachidonic acid and its metabolism given its 
prominent enrichment in the high-convergence reaction 
sub-network compared to HMR2. Reaction cluster #14 
revealed a significant number of enzymes responsible for 
the cleavage of arachidonic acid from cellular lipids 
among the mutation-associated genes. PLA2G2A, 
PLA2G2D, PLA2G2F, PLA2G4A, PLA2G4D, PLA2G5, 
PLA2G10, and PLB1 all belong to the class of 
phospholipases A2 and function to release free fatty acids 
from the sn-2 position of phospholipids (Astudillo et al., 
2012). Noteworthy, PLA2G2A shows an exquisite 
preference towards phospholipids containing arachidonic 
acid at the sn-2 position (Murphy and Gijon, 2007). In 
this context, reaction cluster #2 implicates three fatty acid 
binding proteins (FABP1, FABP4, and FABP6) in the 

trafficking of long chain fatty acids. However, the exact 
role and affinity towards arachidonic acid is still debated 
(Anderson and Stahl, 2013; Furuhashi and Hotamisligil, 
2008). We thus decided to exclude these genes from the 
candidate pathway. In contrast, manual review revealed 
that another mutation-associated gene, FAAH2, affects 
arachidonic acid availability. Specifically, FAAH2 
degrades endogenous cannabinoid anandamide to release 
arachidonic acid (Wei et al., 2006). The reaction cluster 
#8 indicates inclusion of reactions belonging to the 
cytochrome P450-pathways of arachidonic acid. These 
include reactions in epoxygenase pathway, catalyzed by 
CYP2B6, CYP2C8, CYP2E1, and in the hydroxylase 
pathway, catalyzed by CYP4F11 (Arnold et al., 2010; 
Kroetz and Zeldin, 2002). CYP4X1 is also a likely 
member to the epoxygenase pathway, but evidence for 
specificity to arachidonic acid is still unconclusive 
(Kumar, 2015; Stark et al., 2008). Reaction clusters #7, 
#11, #12 and #41 and manual review of mutation-
associated genes implicate the lipoxygenase (LOX) 
pathway of arachidonic acid and the metabolism of a class 
of LOX products, leukotrienes. CYP4F2, CYP4F3, and 
PTGR1 catalyze the inactivation of leukotriene B4, a 
product of arachidonic acid metabolism, either by w-
oxidation or via the 12HDH/15oPGR pathway (Murphy 
and Gijon, 2007). Four other mutation-associated genes 
are involved in the conversion of leukotriene C4 to 
leukotriene D4 and then leukotriene E4, on one hand 
GGTLC1, GGT6, GGT7 (Murphy and Gijon, 2007), and 
the other DPEP1 (Croft et al., 2014). In addition three 
other mutation-associated genes belong to the LOX 
pathway, on one hand ALOX12B and ALOXE3, on the 
other ALOX15. ALOX12B and ALOXE3 are responsible 
for the synthesis of another class of LOX products, 
hepoxilins, and in particular hepoxilin A (Munoz-Garcia 
et al., 2014). ALOX15 catalyzes the first step in the 
synthesis of yet another class of LOX products, lipoxilins 
(Schneider and Pozzi, 2011). Reaction cluster #1 
implicates activation of very long-chain fatty acid, such as 
arachidonic acid, by acyl-CoA synthetases ACSL4, 
ACSL5, ACSL6, and ACSBG1. In particular, ACSL4 and 
ACSL6 show selectivity towards arachidonic acid, in that 
they constitute the first step for its incorporation into 
cellular lipids (Astudillo et al., 2012). Intriguingly, 
reaction cluster #49 connects fatty acid elongases to such 
activation of very long-chain fatty acid. In particular, 
ELOVL7 and ELOVL2 participate in the elongation of w-
6 fatty acids, respectively upstream and downstream of 
arachidonate (Ohno et al., 2010). MBOAT2 is instead 
involved in the Land’s cycle to reincorporate activated 
arachidonic acid in the membrane lipids (Astudillo et al., 
2012). Besides the LOX and cytochrome P450 pathway, 
another major route of arachidonic acid is the 
cyclooxygenase (COX) pathway to produce 
prostaglandins. Manual review implicates six mutation-
associated genes in the metabolism of prostaglandin H2, 



the first product of arachidonic acid conversion in the 
COX pathway. Prominently, PTGS2 (also known as 
COX-2) catalyzes the first common step in the COX 
pathway from arachidonic acid to prostaglandin H2 
(Schneider and Pozzi, 2011). HPGDS converts 
prostaglandin H2 to prostaglandin D2 (Schneider and 
Pozzi, 2011). GSTM2 and GSTM3 can convert 
prostaglandin H2 to prostaglandin E2 (Hayes et al., 2005), 
which in turn can be converted to prostaglandin F2a by 
CBR1 (2015; Malatkova et al., 2010). AKR1C3 can 
reduce prostaglandin H2 and D2 to prostaglandin F2a and 
11b-prostaglandin F2a, respectively (Penning, 2014). Next 
we focused on xenobiotics metabolism, among the most 
enriched pathways in the high-convergence reaction sub-
network. We first noticed that nine genes overlap with the 
metabolism of arachidonic acid. ACSL5 and ACSBG1 
(Wermuth, 2003), AKR1C3 (Penning, 2014), CBR1 
(Malatkova et al., 2010), CYP2B6, CYP2C8, CYP2E1 
(Wermuth, 2003), GSTM2 and GSTM3 (Hayes et al., 
2005) have also reported activity in the detoxification of 
electrophilic xenobiotics. Reaction clusters #4, #7, #16 
and #21 implicate phase I of xenobiotics metabolism (also 
called functionalization). After manual review, we 
gathered a total of 23 genes involved in the 
functionalization phase. The great majority (21) are 
oxidoreductases in the family of cytochrome P450 
(CYP3A5, CYP3A7), alcohol dehydrogenases (ADH1C, 
ADH6, ADH7), flavin-containing monoxygenases 
(FMO3, FMO4), aldo-keto reductases (AKR1B10, 
AKR1B15, AKR1C1, AKR1C2, AKR1C4), quinone 
reductases (NQO1, NQO2), carbonyl reductases (CBR3), 
aldehyde dehydrogenases (ALDH3A1, ALDH3A2, 
ALDH3B1), and amine oxidases (AOC1, AOC2, MAOB) 
(Brozic et al., 2011; Quinn et al., 2008; Wermuth, 2003). 
The two remaining genes, CES1 and EPHX1, belong 
instead to the class of hydrolases (Wermuth, 2003). 
Reaction cluster #3 implicates phase II of xenobiotics 
metabolism, also known as conjugation. Collectively, we 
found 14 genes that can catalyze conjugation reactions 
among the mutation-associated genes, besides the above-
mentioned ACSL5 and ACSBG1. UGT1A1, UGT1A4, 
UGT1A6, UGT1A7, and UGT1A10 are UDPGA 
transferases that carry glucuronidation reactions on 
xenobiotics (Wermuth, 2003). GSTA2, GSTA3, GSTM1, 
GSTM4, GSTP1, and MGST1 catalyze the conjugation of 
glutathione (Hayes et al., 2005). SULT1A1, SULT1A2, 
SULT1A4, SULT2B1, and SULT4A1 belong to the 
family of sulfotransferases and are responsible for 
sulfonation reactions on xenobiotics using PAPS as 
cofactor (Wermuth, 2003). Finally, reaction clusters #22 
and #56 include transporters for both arachidonic acid-
derived products and solubilized xenobiotics. The organic 
anion transporters SLCO1A2 and SLCO1B3 show 
affinity for prostaglandin E2 and leukotriene C4, 
respectively (Thiriet, 2012). The ABC transporters 
ABCC1 and ABCC3 are renowned for their ability to 

move a variety of xenobiotics, but other substrates include 
prostaglandin A1, A2, D2, E2, 15d J2 and leukotriene C4 
(Fletcher et al., 2010a). Manual review revealed an 
additional ABC transporter with related activity among 
the mutation-associated genes, ABCC2 (Fletcher et al., 
2010a). The enrichment for the occurrence of oxygen- 
and glutathione-consuming reactions in the high-
convergence reaction sub-network persuaded us to 
investigate which other genes support their metabolism. 
There are six enzymes among the mutation-ssociated 
genes that are involved in glutathione biosynthesis, 
GCLC, GCLM, GPX2, GPX3, GSR, and OPLAH 
(Pompella et al., 2002). These expand the list of 
glutathione-utilizing enzymes in the candidate pathway to 
a total of 17 members. Also, 15 additional mutation-
associated genes encode for reactions that use oxygen: six 
belong to the cytochrome P450 (CYP2R1, CYP4X1, 
CYP24A1, CYP26A1, CYP27B1, CYP39A1); five 
participate in the metabolism of aromatic amino acids 
(DBH, HGD, IDO1, PAH, TPH1); while the remaining 
genes have disparate metabolic activities (ASPH, CDO1, 
MIOX, SCD5). We neglected the result on the enrichment 
for the pathways bile acid recycling and phenylalanine, 
tyrosine, and tryptophan biosynthesis because the 
associated genes that drove the enrichment are best 
explained by xenobiotics metabolism. The so-
reconstructed candidate pathway features 34 genes 
attributable to arachidonic acid metabolism, 41 genes 
attributable to xenobiotics metabolism, 21 genes that 
mediate glutathione and oxygen metabolism, and 5 genes 
in the transport system. We reviewed each protein in this 
pathway in UniProt and/or Reactome to validate the gene 
annotation provided by literature (2015; Croft et al., 
2014). In total, 101 out of 525 of all mutation-associated 
metabolic genes are represented in this pathway. We 
termed this pathway AraX. 

Enrichment of pathways by mutation-associated 
genes. We calculated the overrepresentation of AraX by 
each group of mutation-associated genes compared to any 
other KEGG metabolic pathways (189) or Reactome 
pathways (674), as retrieved in MSigDB, using the 
Fisher’s Exact Test. The mean enrichment of a pathway 
across all mutations was subject to bootstrapping (1’000 
replicates) in order to calculate the 95% confidence 
interval for the mean enrichment. This operation allows 
evaluating the robustness of a pathway mean enrichment 
to outliers (i.e. mutations strongly associated with a 
pathway).  

Survival analysis. The deregulation at the level of gene 
expression for a metabolic pathway in a sample was 
estimated using Pathifier (Drier et al., 2013). This 
algorithm returns a score between 0 and 1 that represents 
the extent to which the expression of a pathway in a 
sample is deviating from the centroid pathway expression 
in normal samples. Hence, we calculated the score for all 



tumor samples in this study belonging to six cancer types 
for which matched normal samples were available in 
TCGA. These normal samples were used to provide the 
reference expression level of the pathway in a tissue. 
Next, we binned the tumor samples according to their 
deregulation score into “low” (if the score is below the 
95th percentile of the scores across all normal samples), 
“high” (if above), or “very high” (if above the 95th 
percentile of the scores across all tumor samples). Thus, if 
a tumor sample has a “low” score, then its deregulation is 
similar to the most deregulated of the normal samples of 
reference. Kaplan-Meier curves were generated for each 
group, and the significance of survival difference was 
estimated using the log-rank test. In order to calculate 
which metabolic pathway deregulation has the foremost 
effect in the prediction of survival, we used a lasso 
penalized Cox regression model. Patient survival was 
regressed using a Cox proportional hazards model that 
uses as variables the deregulation score of 186 KEGG 
metabolic pathways and AraX. The selection of variables 
relevant to predict survival was performed using 
increasing values for the lasso penalty (log-λ) used in the 
regression. The optimal penalty value was calculated such 
that the mean 10-fold cross-validated error was minimum. 
Out of 187 initial variables, only 4 variables are predictive 
of survival at the optimal penalty.  
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Flux balance analysis predicts 
essential genes in clear cell renal 
cell carcinoma metabolism
Francesco Gatto1,*, Heike Miess2,*, Almut Schulze2,3,4 & Jens Nielsen1

Flux balance analysis is the only modelling approach that is capable of producing genome-wide 
predictions of gene essentiality that may aid to unveil metabolic liabilities in cancer. Nevertheless, 
a systemic validation of gene essentiality predictions by flux balance analysis is currently missing. 
Here, we critically evaluated the accuracy of flux balance analysis in two cancer types, clear cell renal 
cell carcinoma (ccRCC) and prostate adenocarcinoma, by comparison with large-scale experiments of 
gene essentiality in vitro. We found that in ccRCC, but not in prostate adenocarcinoma, flux balance 
analysis could predict essential metabolic genes beyond random expectation. Five of the identified 
metabolic genes, AGPAT6, GALT, GCLC, GSS, and RRM2B, were predicted to be dispensable in 
normal cell metabolism. Hence, targeting these genes may selectively prevent ccRCC growth. Based 
on our analysis, we discuss the benefits and limitations of flux balance analysis for gene essentiality 
predictions in cancer metabolism, and its use for exposing metabolic liabilities in ccRCC, whose 
emergent metabolic network enforces outstanding anabolic requirements for cellular proliferation.

The regulation of metabolism has been recognised to be of central importance in cancer1–3. Several stud-
ies have collectively suggested that cancer selects for cell clones that have reprogrammed their metab-
olism, resulting in distinct cancer type-dependent metabolic phenotypes4–11. These programs enforce 
cancer cell dependence on specific flux distributions, and disruption of the underlying pathways mostly 
results in cell death12–17.

Under these premises, metabolic modelling using flux balance analysis (FBA)18 is the only approach 
that can predict the effect of genetic and environmental perturbations in the disruption of such metabolic 
phenotypes at the genome scale19,20, and applications of these models for studying cancer or metabolic 
diseases have been advocated21–24. Contrary to other systems biology approaches, FBA typically involves 
only limited fundamental assumptions (e.g., mass and charge balance in all reactions, and thermodynam-
ically constrained reaction directionality) and little to no parameter fine-tuning (e.g., non-growth and 
growth-associated ATP maintenance), yet still allows for meaningful genome-wide predictions of gene 
essentiality in a variety of model organisms25,26, provided that a genome-scale metabolic model for the 
organism is available. Nevertheless, a number of algorithms are now available to infer the active meta-
bolic network in human cells27–34, and the constraints required to formulate a plausible FBA can now be 
more readily obtained due the increased availability of high-throughput data. Despite these promising 
conditions, use of FBA to predict gene essentiality in cancer metabolism is still at its infancy, and besides 
the extensive theoretical formulations reported in the literature, few practical studies have so far bene-
fited from the systematic analyses enabled by FBA-based studies35–39.

1Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg 41296, Sweden. 
2Gene Expression Analysis Laboratory, Cancer Research UK London Research Institute, London WC2A 3LY, United 
Kingdom. 3Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074 Würzburg, Germany. 4Comprehensive Cancer 
Center Mainfranken, Josef-Schneider-Str.6, 97080 Würzburg, Germany. *These authors contributed equally to this 
work. Correspondence and requests for materials should be addressed to J.N. (email: nielsenj@chalmers.se) or 
A.S. (email: almut.schulze@uni-wuerzburg.de)

Received: 20 January 2015

Accepted: 27 April 2015

Published: 04 June 2015

OPEN



www.nature.com/scientificreports/

2Scientific RepoRts | 5:10738 | DOi: 10.1038/srep10738

In this study, we critically and systematically assessed the benefits and limitations of FBA for per-
forming genome-scale predictions of gene essentiality in cancer metabolism. In particular, we were 
interested in the use of FBA to expose metabolic liabilities in clear cell renal cell carcinoma (ccRCC), 
the most common form of kidney cancer40. This cancer type was chosen as because we have recently 
uncovered that it features a compromised metabolic network41. We also verified whether the accuracy 
of FBA extends to a second cancer type, prostate adenocarcinoma (PC) and analysed the essentiality of 
selected genes in metabolic models of non-malignant tissues. Our findings suggest that FBA is suitable 
to uncover essential genes in cancers whose emergent metabolic network enforces outstanding anabolic 
requirements for cellular proliferation. Hereby we demonstrate that ccRCC depends on the expression 
of AGPAT6, GALT, GCLC, GSS, and RRM2B, which, although essential for cancer cells, are potentially 
nonessential in normal cells.

Results
Strategy used to benchmark predictions of gene essentiality in cancer metabolism. Flux 
balance analysis (FBA) is possibly the only modelling approach that has the potential to predict gene 
essentiality in cancer metabolism at the genome scale39. In this study, we sought to systematically vali-
date whether FBA can be used to determine gene essentiality in cancer cell metabolism by comparing 
predictions with large-scale experimental datasets (Fig. 1). Therefore, the FBA problem was formulated 
to scan for a feasible flux distribution that enables the simultaneous biosynthesis of all human biomass 
components, the so-called biomass equation, in cancers growing in defined serum-containing medium42. 
In these conditions, the metabolic network is free to absorb any medium or serum metabolites (at any 
rate), which include sugars, amino acids, several metabolic intermediates and short chain fatty acids. In 
FBA, the emergence of a feasible flux distribution that can support biomass formation is generally limited 
by the introduction of constraints43,44 that can represent molecular or environmental limitations (e.g., the 
absence of a given enzyme in a cancer type or the unavailability of a nutrient in the microenvironment).

Here, we considered two typical sets of constraints: A) the topology of the cancer specific-metabolic 
network; and B) a profile of experimentally measured fluxes for a number of exchange metabolites (i.e., 
exchange fluxes) in a panel of cancer-specific cell lines (generally more than one cell line for each type of 
cancer). Using either of these two constraints we predicted gene essentiality using FBA by introducing a 
constraint that disables flux in the univocally encoded reaction(s). This constraint is commonly referred 
to as in silico single-gene knockout, and the gene is essential if the in silico single-gene knockout ablates 
biomass production. A gene knockout ablates biomass production if there is no flux distribution that 
allows the biomass equation to carry a flux, or if the knockout results in a substantial flux reduction. 
However, a gene knockout consents biomass production if there is no change in the flux through the bio-
mass equation. Single-gene knockout resulting in no change in biomass production is mostly explained 
due to one of the following reasons: 1) gene redundancy, i.e., more than one gene encodes for the reac-
tion(s) associated with the knockout; 2) pathway redundancy, i.e., there is an alternative pathway with 
the same overall stoichiometry that can compensate for the knockout; or 3) the reaction(s) encoded by 
the knocked-out gene are not active (dead end) at the studied condition. Depending on this outcome, a 
gene is declared essential or nonessential in silico for a certain cancer. If constraint B) is implemented, an 
in silico single-gene knockout may ablate or consent biomass production, depending on which profile of 
exchange fluxes is used as a constraint. In this case, the corresponding gene is declared essential in silico 
for the cancer type only if biomass production is ablated using exchange flux profiles from at least 70% 
of its corresponding cancer cell lines.

In principle, the proposed approach should capture all metabolic liabilities related to biomass for-
mation induced by the network topology and to the activation of metabolic pathways induced by the 
exchange flux profile of a certain cancer. At the same time, it is noteworthy that the FBA problem formu-
lated herein will not uncover other metabolic liabilities known to be associated with cancer survival, for 
example, maintenance of anti-oxidant pools45. To evaluate the gene essentiality predictions, we compared 
these to large-scale experimental data in vitro: in this case, a panel of cancer-specific cell lines derived 
from prostate adenocarcinoma (PC) or clear cell renal cell carcinoma (ccRCC), both cultured in defined 
serum-containing medium. The cells were transfected with a library of siRNA oligonucleotides that target 
approximately 230 metabolic genes. In the PC screen, induction of caspase activity was quantified after 
96 h following transfection, whereas in the ccRCC screen, reduction in cell number was monitored. If at 
least 70% of the cancer cell lines passed a given threshold for caspase activity or cell number reduction, 
then the gene was declared essential in vitro for this cancer type (or nonessential in vitro if vice versa). 
The accuracy of the predictions was calculated using the Matthews correlation coefficient (MCC) and 
the related Fisher’s exact test statistics.

Accuracy of flux balance analysis for gene essentiality in clear cell renal cell carcinoma metab-
olism. We decided to assess in vitro gene essentiality in the metabolism of ccRCC, as this is the most 
common form of kidney cancer40 and it exhibits a strong regulation and dependence on a reprogrammed 
metabolism following transformation46–48. Additionally, we have recently shown that it features a charac-
teristically compromised metabolic network41. The reliance on specific metabolic reactions for survival 
suggests that this cancer may be particularly susceptible to disruptions in the metabolic network. A panel 
of 5 ccRCC cell lines (786-O, A498, 769-P, RCC4, and UMRC2) was transfected with a custom library of 
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siRNA oligonucleotides targeting 230 different metabolic enzymes, transporters, and regulators involved 
in central carbon metabolism. For each siRNA, loss of viability was quantified by determining the mean 
cell number reduction relative to a negative control (non-targeting RISC-free) and a positive control 
(siRNA targeting ubiquitin B). The number of genes declared essential in vitro depends on the threshold 
chosen for the mean cell number reduction. We selected a 30% reduction for benchmarking purposes 
because the quantity of essential genes appears to reach a plateau at this value; note that no siRNA caused 
a cell number reduction greater than 50% (Supplementary Fig. 1). With this threshold, of the 217 tested 
siRNAs that overlap with the human metabolic network49, 20 gene knockdowns caused death in at least 
70% (4 of 5) of the ccRCC cell lines and were thus deemed essential in vitro (Supplementary Fig. 2). In 
contrast, 136 tested siRNAs did not significantly affect cell number in at least 70% of the ccRCC cell lines 
and were conversely deemed nonessential in vitro (Supplementary Data 1). The remaining 61 genes were 
not classified, as their knockdowns had mixed effects across cell lines and therefore were not directly 
attributable to the ccRCC phenotype.

Figure 1. Strategy to measure the accuracy of flux balance analysis predictions of gene essentiality 
in cancer metabolism . Left part: the Human Metabolic Reaction (HMR) database was used as a generic 
genome-scale metabolic network to reconstruct a cancer-type specific network based on proteome data 
obtained from cancer specimen (in the example, the reaction A fi B is absent in the cancer-specific model 
due to lack of the matched enzyme at the protein level for that cancer type). Successively, flux balance 
analysis is used to simulate whether a flux towards production of biomass (metabolite E) was feasible after 
every single gene-knockout, using as constraints either the topology of the cancer type-specific metabolic 
network or the measured fluxes for a number of exchange metabolites in different cancer type-derived cell 
lines. In the latter case a gene is deemed essential if it disables biomass production in ≥70% of the cell lines. 
Grey arrows indicate reactions not occurring in the network. Dashed arrows indicate measured fluxes in 
a cell line. Right part: cancer-derived cell lines were cultured and transfected with a library of siRNAs that 
target ~230 metabolic genes and cell number was determined after 4 days. If ≥70% of the cell lines passed 
a given threshold of cell death, the corresponding gene was deemed essential. Bottom: gene essentiality for 
the ~230 genes targeted by the siRNA library was compared in silico vs. in vitro and the accuracy of the 
predictions was calculated by several statistical measures (e.g. the Matthews Correlation Coefficients).
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Next, we predicted in silico gene essentiality using as the sole constraint the topology of the ccRCC 
metabolic network, as defined by a ccRCC genome-scale metabolic network41. We identified 28 essential 
genes and 1,383 nonessential genes (Fig. 2A). Topology-driven gene essentiality was found to be accu-
rate at a statistically significant level (MCC =  0.226, p =  0.043, Fig. 2B). This approach detected two true 
positives (i.e., candidates essential both in silico and in vitro), namely AGPAT6 and GALT (Fig. 2A); the 
expected number of true positives by chance is close to approximately zero ([TP] =  0.174). In this sense, 
we can assume that AGPAT6 and GALT represent bona fide pivotal metabolic nodes in ccRCC, regard-
less of the exchange fluxes, which suggests that their essentiality is due to a loss of alternative redundant 
metabolic pathways or genes in ccRCC. Interestingly, siRNAs corresponding to genes predicted to be 
essential in silico result overall in a mean cell number reduction significantly higher than that for siRNAs 
corresponding to genes predicted not to be essential (p <  0.001, Wilcoxon rank-sum test, Fig. 2C).

Next, we also implemented exchange fluxes from a panel of seven ccRCC cell lines (786-O, A498, 
ACHN, CAK1-1, TK-10, RXF-393, and UO-31) as constraints50,51. Using this approach, eighty-seven 
genes were predicted to be essential in at least 70% (5 of 7) of the cell lines (Fig. 3A). When exchange 
fluxes were considered, the gene essentiality prediction was found to have an increased accuracy, when 
compared to the in vitro data (MCC =  0.235, p =  0.010, Fig. 3B). Additionally, in this case we observed a 
substantial mean cell number reduction for the group of siRNAs targeting genes predicted to be essential 
in silico compared to those predicted to be nonessential (p <  0.001, Fig. 3C). In particular, four additional 
genes were identified as true positives using this approach, namely CAD, DHCR24, FDFT1, and ODC1 
(Fig. 3A). It is likely that the essentiality of these genes is attributable to common metabolic requirements 
among ccRCC cell lines (e.g., a high lactate secretion to glucose uptake ratio or secretion of secondary 
metabolites), which induces dependence on the expression of enzymes that activate the related metabolic 
pathways. Interestingly, the accuracy of these predictions was not preserved if only exchange fluxes were 
considered, but the topology of the ccRCC metabolic network was neglected: we observed no signifi-
cant predictive ability when the generic human metabolic network was used (MCC =  0.086, p =  0.339, 
Supplementary Fig. 3). The results of the accuracy achieved by FBA in these scenarios are reported in 
Table 1.

Taken together, these results suggest that in ccRCC metabolism, FBA is able to predict gene essential-
ity, although to a limited degree. Gene essentiality as exposed by FBA is in turn attributable to a rewiring 
of the metabolic network and exchange fluxes that contribute to biomass production. Conversely, it is 
conceivable that the 14 genes that were found to be essential in vitro but were not captured by FBA are 
essential because the gene products carry out metabolic tasks that are not ascribable to the biomass pro-
duction simulated here. Alternatively, it also possible that redundant pathways available in the metabolic 

Figure 2. Gene essentiality in ccRCC metabolism as predicted by flux balance analysis using the 
metabolic network topology as a sole constraint for biomass formation positively compares to a 
functional RNAi screen targeting ~230 metabolic genes in a panel of ccRCC cell lines . A) Gene 
essentiality in ccRCC according to flux balance analysis using the metabolic network topology as only 
constraint for biomass formation. B) Contingency table for the comparison between the declaration of gene 
essentiality in silico vs. in vitro for those siRNAs in the library that had consensus effect in terms of cell 
number reduction in ≥70% of the cell lines. AGPAT6 and GALT are considered true positives (p =  0.04) 
because their ablation results in cell death in silico and in vitro. C) Boxplots of total cell number reduction 
for the groups of siRNAs predicted to be either essential (red) or non essential (blue) in silico.



www.nature.com/scientificreports/

5Scientific RepoRts | 5:10738 | DOi: 10.1038/srep10738

network are not active due to the presence of regulation in vitro or in vivo that is not considered in the 
FBA simulations, as suggested by studies of gene deletion in yeast52.

Accuracy of flux balance analysis for gene essentiality in prostate adenocarcinoma metab-
olism. We next sought to define whether the accuracy of FBA predictions is cancer type-dependent. 
To this end, we used a published dataset that applied the same custom siRNA library in a panel of three 
prostate adenocarcinoma (PC) cell lines (LNcaP, PC3, DU145)53. Cell death was defined by induction of 
caspase activity, and we declared a gene essential in vitro if the corresponding siRNA caused apoptosis 
with a caspase activity z-score ≥  2.5 (i.e., number of standard deviations from control) in at least 2 of 
the 3 cell lines, as adopted in the original study. Using these criteria, 14 metabolic genes were found to 
be essential in the PC cell lines (Supplementary Fig. 4). The topology of a PC specific metabolic net-
work was reconstructed using the same pipeline followed to generate the previously employed ccRCC 
genome-scale metabolic model41 and was used as the sole constraint to perform FBA to predict in silico 
gene essentiality. We identified 37 essential genes, whereas 1,638 genes were classified as nonessential 
(Supplementary Fig. 5A). We also implemented exchange fluxes from a panel of two PC cell lines, PC3 
and DU145, as constraints50,51, which resulted in the classification of 35 additional genes as essential in 
both these cell lines (Supplementary Fig. 5B).

Contrary to the results obtained for ccRCC, the accuracy of FBA predictions in PC was consid-
erably lower when using metabolic network topology as the sole constraint (MCC =  0.082, p =  0.233, 

Figure 3. Gene essentiality in ccRCC metabolism as predicted by flux balance analysis using the profile 
of exchange fluxes from seven ccRCC cell lines in addition to the ccRCC network topology shows 
increased accuracy when compared with the RNAi screen . A) Gene essentiality in ccRCC according to 
flux balance analysis using the profile of exchange fluxes from seven ccRCC cell lines on top of ccRCC 
network topology. Each profile of exchange fluxes representing a ccRCC cell line entails a set of genes 
essential when using that profile. The heatmap features only genes that are essential using at least one flux 
profile. Finally, genes that are essential using at least 70% of the cell line flux profiles are deemed essential in 
silico in ccRCC. B) Contingency table for comparison between the declaration of gene essentiality in silico 
vs. in vitro for those siRNAs in the library that had consensus effect in terms of cell number reduction in ≥  
70% of the cell lines. Other than AGPAT6 and GALT, DHCR24, FTFD1, CAD, and OCD1 are true positives 
(p =  0.007). C) Boxplots of total cell number reduction for the groups of siRNAs predicted to be either 
essential (red) or non essential (blue) in silico.
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Supplementary Fig. 6A), and even worsened with the implementation of exchange fluxes (MCC =  0.039, 
p =  0.635, Supplementary Fig. 6C). However, when only topology was used, we observed a slightly higher 
mean caspase activity for the group of siRNAs targeting genes predicted to be essential in silico (p = 0.011, 
Supplementary Fig. 6B); this did not hold when exchange fluxes were also used as constraints (p =  0.152, 
Supplementary Fig. 6D). The results of the accuracy achieved by FBA in these scenarios are reported 
in Table 1. Interestingly, most genes predicted to be essential in silico participate in the biosynthesis of 
steroids. In particular, the two true positive genes detected by FBA, MVD and NSDHL, belong to this 
pathway. The inefficacy of exchange fluxes to unveil additional liabilities may be due to the low number 
of flux profiles available as constraints for PC (only 2 cell lines), as opposed to ccRCC (7 cell lines). 
However, it is also possible that the altered exchange fluxes in PC cells fuel pathways other than those 
required for biomass production and are therefore not captured by the FBA model used here. One of 
these pathways could indeed involve the synthesis of cholesterol for the production of steroid hormones, 
which play a major role in the development of PC54.

These results suggest that contrary to ccRCC, FBA fails to accomplish acceptable predictions of gene 
essentiality in PC metabolism. This may reflect the fact that PC cells are more robust in the task of syn-
thesising biomass components. In support of this, Ros and colleagues identified a metabolic liability in 
PC that does not relate to biomass formation, but is involved in detoxification of reactive oxygen species 
(ROS)53. In addition, ccRCC metabolism could represent an ideal situation for the identification of met-
abolic liabilities using FBA because of its highly compromised metabolic network.

Effect of the medium metabolites on the accuracy of flux balance analysis predictions. In 
FBA, the definition of metabolites available for uptake is a decisive constraint for the prediction of gene 
essentiality43. In simulations with microorganisms, the list of metabolites available for uptake mirrors 
the medium composition used in the controlled experimental setup. Because human cancer cell lines 
are normally cultured in serum-containing medium, the list of 150 metabolites adopted so far may 
potentially contain a large number of compounds that can be utilised in silico even though they are not 
utilised in any metabolic reactions by cells in vitro (e.g., bilirubin). To explore the extent to which the 
medium composition affects the accuracy of FBA predictions, we repeated all simulations using Ham’s 
medium, a nutrient poor medium adopted in previous studies to predict in silico gene essentiality of 
cancer cells33,39. This less permissive medium decreases the availability of alternative pathways. Thus, the 
number of essential genes predicted in silico increases for both ccRCC (Supplementary Fig. 7) and PC 
(Supplementary Fig. 8), when only the topology is used as a constraint and when exchange fluxes are 
also considered. However, these genes were mostly not found to be essential in vitro, and therefore the 
accuracy of the FBA predictions was lower for all four scenarios (Supplementary Fig. 9). We conclude 
that a broader definition of the medium improves FBA simulations in human systems and reduces the 
number of false negatives (i.e., genes essential in silico but not in vitro) induced by incorrect assumptions 
regarding the unavailability of certain metabolites to the cells. The results of the accuracy achieved by 
FBA in these scenarios are reported in Table 1.

Cancer type
FBA 

constraints Medium TP FN FP TN

Fisher 
exact 

test p-
value MCC

Clear cell renal cell 
carcinoma

Topology
FBS 2 18 1 135 0.043 0.226

HAM 5 15 12 124 0.046 0.174

Topology + 
Exchange fluxes

FBS 6 14 11 125 0.010 0.235

HAM 6 14 15 121 0.032 0.186

Exchange fluxes FBS 1 19 2 134 0.339 0.086

Prostate adenocarcinoma

Topology
FBS 2 12 12 186 0.233 0.082

HAM 2 12 14 184 0.285 0.068

Topology + 
Exchange fluxes

FBS 2 12 19 179 0.635 0.039

HAM 2 12 27 171 1 0.005

Table 1. Statistical measure of accuracy of the flux balance analysis predictions on gene essentiality 
compared to in vitro results for different set of constraints, media, and cancer types. Key: TP – true positive 
(essential in silico and in vitroin vitro); FN – false negative (non essential in silico, essential in vitro); FP 
– false positive (essential in silico, non essential in vitro); TN – true negative (non essential in silico, non 
essential in vitro); MCC – Matthews Correlation Coefficient.
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Effect of the choice for the cell death threshold in vitro on the accuracy of flux balance anal-
ysis predictions. Given that the definition of gene essentiality in vitro depends on the threshold 
selected for cell death (namely the mean cell number reduction in the ccRCC screen and the caspase 
activity z-score in the PC screen), we performed a sensitivity analysis on these thresholds for all tested 
scenarios (implemented constraints, cancer types, and medium definition). In the case of ccRCC, we 
observed a positive relationship between the accuracy of FBA predictions and the strictness of the defi-
nition of the threshold for cell death, at least up to the point where the number of essential genes in 
vitro is less than 10, which occurs for mean cell number reduction >40% (Supplementary Fig. 10). This 
trend was conserved in all scenarios, with the highest accuracy being achieved when using the topology 
of the ccRCC metabolic network in a serum-containing medium as the sole constraint to perform FBA; 
the lowest accuracy was observed when constraining the exchange fluxes in Ham’s medium. In the case 
of PC, the above trend was not observed for any scenarios (Supplementary Fig. 11). In particular, the 
accuracy of predictions was not noticeably different from a random predictor. Taken together, this indi-
cates that the accuracy of in silico predictions is significant in ccRCC (but not in PC) for a reasonable 
range of thresholds upon which a gene is declared essential in vitro.

Effect of cancer cell line exchange fluxes on the inference of gene essentiality in a certain 
cancer. Because FBA proved powerful in exposing the metabolic liabilities of ccRCC, we decided to 
validate some of the in silico predictions of gene essentiality. In particular, we tested the extent to which 
exchange fluxes from ccRCC cell lines can be used to infer gene essentiality attributable to the ccRCC 
phenotype. To this end, we selected some genes that were differentially classified as essential depending 
on the cell line flux profile, but still classified as essential in ccRCC according to a consensus outcome, 
i.e., essential in > 70% of cell lines. We chose to test the predictions for GCLC, GSS, SLC7A9 (consid-
ered essential in silico for ccRCC because they were classified as such in 5 of the 7 cell lines), and PNP 
(considered nonessential in silico for ccRCC because it was classified as such in 3 of the 7 cell lines). In 
addition, we tested UMPS and RRM2B, which were deemed essential in silico for all ccRCC cell lines 
upon implementation of every exchange flux profile. Next, the corresponding genes were silenced in five 
of the seven cell lines whose exchange fluxes were used to constrain the FBA predictions (786-O, A498, 
CAKI-1, TK10, and UO31). In accordance with the threshold for cell death adopted above, a gene was 
declared essential in vitro for ccRCC if more than 70% of cell lines tested (e.g., at least 4 of 5) exhibited 
at least 30% mean cell number reduction compared to control (Fig. 4).

At the level of gene essentiality in ccRCC, the consensus predictions for RRM2B, GCLC, UMPS, and 
GSS were confirmed in vitro. However, PNP and SLC7A9 knockouts showed mixed effects across cell 
lines in vitro. Hence, the essentiality of these genes in ccRCC could not be inferred from this experiment. 
Overall, this result suggests that ccRCC cell line exchange fluxes can entail some common metabolic 
requirements associated with the ccRCC phenotype, which can be exploited to predict gene essentiality 
in ccRCC metabolism. However, the exchange flux measurements appear to be insufficient per se to 
achieve reliable predictions for a specific cell line. Indeed, we observe that only 17 of the 30 individual 
predictions were replicated in vitro if the cell-line-specific exchange fluxes were used for the prediction 
of essentiality for the corresponding cell line.

Characterisation of gene essentiality in ccRCC metabolism. FBA exposed some metabolic liabil-
ities in ccRCC that are unlikely to have been predicted by chance. Therefore, we sought to characterise 
those genes that were classified in this study as essential in silico and validated in vitro. This list includes 
ten metabolic genes: AGPAT6, CAD, DHCR24, FDFT1, GALT, GCLC, GSS, ODC1, RRM2B, and UMPS. 
First, we predicted whether these gene knockouts would be toxic for the execution of essential metabolic 
functions, i.e., whether the in silico gene knockouts compromise the metabolism of normal cell types. As 
previously described33, we simulated the essentiality of these genes in 83 normal cell types by checking 
whether 56 primary metabolic tasks (e.g., synthesis of cholesterol or oxidative phosphorylation) could 
be carried out in silico upon application of the corresponding in silico gene knockout. In all normal cell 
types, the simulation revealed that knockout of CAD or UMPS ablates the de novo biosynthesis of pyri-
midines, while FDFT1 and DHCR24 knockouts impede the production of cholesterol in normal human 
cell types (Fig. 5A). However, the remaining 6 genes had only minor toxic effects (in <  50% of cell types), 
and can thus be regarded as nontoxic to normal cells.

Next, we specifically checked the toxicity of these gene knockouts in tubular kidney cells, where 
ccRCC is thought to originate from55. In this case, the in silico knockout of ODC1 was found to be toxic 
because it impaired seven essential metabolic tasks in normal kidney cells. On the contrary, AGPAT6, 
GALT, GCLC, GSS, and RRM2B knockouts did not compromise any metabolic task and can thus be 
considered as selectively essential in ccRCC (Fig. 5B). To test the quality of these predictions, we ablated 
GCLC, GSS, RRM2B, and UMPS in an immortalised, non-tumourigenic kidney epithelial cell line (HK-2) 
using RNAi. These four genes were not part of the siRNA screening library but were predicted by FBA to 
be essential both in silico and in vitro. In accordance with the in silico predictions of toxicity, we observed 
cell death when UMPS was knocked out in HK-2 cells, while GCLC, GSS, and RRM2B knockouts caused 
a minor cell number reduction, above the adopted threshold for cell death (Fig. 5C).

Subsequently, we attempted to elucidate the putative mechanisms at the flux level underlying the 
essentiality of the AGPAT6, GALT, GCLC, GSS, and RRM2B genes, which were predicted to be toxic to 
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none or only to a few of the normal human cell types, and in particular were predicted to be nontoxic 
to tubular kidney cells. AGPAT6 and GALT were found to be essential when using the topology of the 
ccRCC metabolic network as the sole constraint for FBA, which is indicative of a loss of pathway redun-
dancy in key steps involved in biomass synthesis. In the human metabolic network, the AGPAT6-encoded 
reaction, i.e., the conversion of glycerol-3-phosphate to 1-acyl-glycerol-3-phosphate, is associated with 
additional isoenzymes, AGPAT9, GPAT2, and GPAM. However, according to the Human Protein Atlas, 
which supported the reconstruction of the ccRCC metabolic network, AGPAT6 is the only member of 
the family of lysophosphatidic acid acyltransferase genes appreciably expressed in ccRCC56. Therefore, 
when AGPAT6 is knocked out, the production of glycerolipids, which is required for biomass production, 
becomes unfeasible (Fig. 6A), making AGPAT6 an essential gene in ccRCC.

Regarding GALT, this enzyme is pivotal in the ccRCC metabolic network because it catalyses the sec-
ond step of the Leloir pathway of galactose metabolism (conversion of UDP-galactose to UDP-glucose). 
Examination of the flux space in ccRCC revealed that this reaction fuels the production of UDP-glucose, 
which is needed for the biosynthesis of glycogen. Knockout of GALT thus results in growth ablation due 
to the inability to produce glycogen, here considered to be an essential biomass component. This path-
way can be bypassed via UGP2, which condenses glucose-1-phosphate with UTP to yield UDP-glucose, 
but UGP2 is not expressed in ccRCC (Fig. 6B). The essentiality of GALT in ccRCC is determined by the 
inactivity of this parallel pathway; this represents an example of loss of redundancy within the topology 
of the metabolic network.

Figure 4. Validation of predicted gene essentiality in ccRCC . Five ccRCC cell lines that match the flux 
profile constraints implemented to predict gene essentiality in ccRCC were transfected with siRNA targeting 
SLC7A9, PNP, RRM2B, GCLC, UMPS and GSS. A non-targeting oligonucleotide, OTP (scrambled siRNA), 
was used as negative control. . Each bar represents the mean cell number reduction relative to control 
together with the 95% highest density interval of two experiments performed in triplicate. The consensus 
outcome across cell lines in terms of gene essentiality is shown below each set of bars corresponding to 
a certain silenced gene. Genes that, if silenced, cause a ≥  30% reduction in cell number relative to the 
non-targeting RISC-free siRNA in ≥  70% of ccRCC cell lines are deemed essential in vitro. The consensus 
outcome for each silenced gene is compared to the prediction of essentiality in silico for the corresponding 
gene in ccRCC (compare with Fig. 3A).
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Figure 5. In silico toxicity for the knockouts in normal cells of genes essential in ccRCC . A) Number 
of normal cell types where a certain metabolic task is impaired upon in silico knockout. For each of 
the ten genes found essential in ccRCC according to this study (RRM2B, ODC1, GSS, GCLC, AGPAT6, 
GALT, FDFT1, DHCR24, UMPS, and CAD; columns), it was tested if the corresponding in silico gene 
knockout affects the feasibility of 56 different metabolic tasks (rows) in 83 genome-scale metabolic models 
representing normal, non-tumourigenic cell types. The numbers within the heatmap indicate how many 
of normal cell types (out of the 83) showed a certain metabolic task that was no more feasible upon the 
knockout (white cells indicate that none of the cell lines showed an effect). The knockout of AGPAT6, 
GALT, GCLC, GSS, ODC1, and RRM2B did not impair more than 50% of normal cell types and are hence 
considered non-toxic to normal cells. On the contrary, FDFT1, DHCR24, UMPS and CAD knockouts 
affected some essential metabolic tasks in all normal cell types and are thereby considered toxic to normal 
cells. B) Number of metabolic tasks impaired upon in silico knockouts in a kidney cell in tubule model. In 
addition to FDFT1, DHCR24, UMPS and CAD, OCD1 knockout is predicted to be toxic because it disables 
seven metabolic tasks. On the other hand, knockouts of AGPAT6, GALT, GCLC, GSS, and RRM2B are 
predicted to be non-toxic and these genes are thus considered selectively essential in ccRCC. C) Validation 
of toxicity for GCLC, GSS, RRM2B and UMPS knockouts in a normal kidney epithelial cell line, HK-2. Cells 
were transfected with siRNA targeting RRM2B, GCLC, UMPS and GSS and a non-targeting scrambled 
siRNA, OTP, was used as negative control. Each bar represents the mean cell number reduction relative to 
control together with the 95% highest density interval of two experiments performed in triplicate. In line 
with the predictions, UMPS knockout caused a substantial cell number reduction in HK-2 cells compared to 
knockouts of GCLC, GSS, and RRM2B, thereby indicating a substantially superior toxicity in normal kidney 
epithelial cells.
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The three additional genes, GCLC, GSS, and RRM2B, were classified as essential only when constraints 
on exchange fluxes were implemented. Their essentiality is likely to be due to a loss of redundancy in 
the ccRCC network when metabolite fluxes are constrained by measured uptake and secretion rates. To 
explore how the fluxes were distributed before the implementation of the exchange fluxes, we relieved 
each of these constraints one at the time until biomass production was restored, thereby allowing us to 
associate gene essentiality with a particular exchange flux. We found that RRM2B is associated with the 
flux of 3-ureidopropionate, a product of the uracil degradation pathway, which is secreted by all ccRCC 
cell lines (range: 0.016 to 0.102 fmol cell−1 h−1) (Fig. 6C, left). This secretion rate is not matched by the 
uptake rate of either of its two precursors, uracil and deoxyuridine (range: 0.003 to 0.016 and 0.010 
to 0.041 fmol cell−1 h−1, respectively). Thus, it is necessary for cells to activate a flux to degrade UDP 
to sustain the given 3-ureidopropionate secretion rate, and one of these steps is catalysed by RRM2B. 
According to the Human Protein Atlas, the two other genes associated with this step (namely RRM1 and 
RRM2) are not expressed in ccRCC, and thus they cannot compensate for this flux if RRM2B is knocked 
out, making RRM2B essential.

In the case of GCLC and GSS, the essentiality is associated with the secretion of glutamate, which 
occurs at remarkably high rates (approximately 4 to 50 fmol cell−1 h−1) in ccRCC cell lines. The analysis 

Figure 6. In silico elucidation of the mechanisms of essentiality for the five genes selectively essential 
in ccRCC . A) AGPAT6 is essential only in ccRCC because of loss of gene redundancy. In ccRCC, 
the repression of AGPAT9, GPAT2, and GPAM in glycerolipid metabolism renders the pathway solely 
dependent on AGPAT6 to produce essential lipids for biomass. B) GALT is selectively essential because of 
loss of pathway redundancy in ccRCC. Low or no expression of UGP2 forces the flux through GALT to 
produce glycogen in ccRCC. C) RRM2B, GCLC and GSS are essential only in ccRCC because of specific 
metabolic requirements of ccRCC cells that activate the corresponding pathway (flux rates are shown in 
fmol cell−1 h−1). Top: the measured secretion rate of 3-ureidopropionate in ccRCC cell lines is not matched 
by the observed uptake rate of its direct precursors, uracil and deoxyuridine. This forces a flux active in 
the catabolism of UDP (part of the pyrimidine degradation pathway) to compensate for the observed 
3-ureidopropionate secretion rate. One of the pathway steps is uniquely catalyzed by RRM2B, given that 
the other genes associated to this reaction (RRM1 and RRM2) are not expressed in ccRCC. Bottom: ccRCC 
cell lines secrete glutamate at a high rate and the only flux distribution that fits glutamate secretion in the 
ccRCC metabolic network requires the cleavage of extracellular glutathione (GSH). Extracellular GSH is in 
turn derived from de novo GSH intracellular synthesis that is catalyzed by GSS and GCLC. Noteworthy, the 
reduction of reactive oxygen species like H2O2 by GSH is a metabolic function preserved in the predicted 
flux distribution. For each protein, the red shading represents the fraction of ccRCC samples in which the 
protein is expressed according to the Human Protein Atlas.
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of the ccRCC flux space unveiled that elevated rates of extracellular glutamate accumulation derive from 
the catabolism of extracellular glutathione (GSH) carried out by different gamma-glutamyl transferases. 
Indeed, the reconstructed ccRCC metabolic network does not include alternative pathways that support 
the secretion of glutamate, such as the xC

– system. Despite the evidence that the xC
– system, an antiporter 

responsible for cystine uptake via a 1:1 exchange with glutamate, is expressed in the kidney57, no evi-
dence for the encoding gene, SLC7A11, is reported at the protein level by the Human Protein Atlas; it 
was therefore not included in the reconstructed network. In the absence of alternative pathways, the 
only flux distribution returned by FBA that fits glutamate secretion requires the cleavage of extracellu-
lar GSH. This is in turn dependent on the secretion of de novo synthesised intracellular GSH, which is 
catalysed by GSS and GCLC (Fig.  6D, right). The genes are therefore classified as essential to support 
this flux distribution. At the same time, GSH is also utilised to reduce peroxides/reactive oxygen species 
(ROS). In this process, GSH is oxidised and dimerises with another moiety to form GSSG, which can be 
catalytically recycled to GSH. Therefore, this flux distribution also includes the expected role of GSH in 
ROS detoxification. Overall, FBA was able to predict a model that associates the essentiality of GSS and 
GCLC to the observed secretion of glutamate. Nevertheless, we acknowledge that model incompleteness 
(attributable to a lack of functional gene annotation in the metabolic network, as in the case of SLC7A11 
in ccRCC) may be a factor that affects the reliability of this prediction, as recognised in earlier works on 
FBA predicted gene essentiality58,59.

Discussion
In the last decade, increasing evidence supports the notion that cancer cells reprogram their metab-
olism and are therefore susceptible to disruption of the metabolic network3. Despite the promise that 
flux balance analysis (FBA) enables prediction of gene essentiality in cancer metabolism at the genome 
scale21, we have observed a scarcity of methodical studies that assess these potential benefits critically. 
Considering the widespread use of FBA in the systems biology community60, we applied fundamental 
principles of FBA to measure the accuracy of the predictions against large-scale gene essentiality exper-
iments performed in vitro. We evaluated the efficacy of this method for two cancer types, clear cell 
renal cell carcinoma (ccRCC) and prostate adenocarcinoma (PC), for a variety of parameters: types of 
FBA constraints used, complexity of the in silico medium (i.e., the spectrum of metabolites available for 
uptake), and the numerical threshold for cell death applied to the in vitro experiments. A summary of 
the accuracy for all tested scenarios is given in Table 1.

Our findings suggest that FBA is sufficiently accurate to expose metabolic liabilities in ccRCC. The 
highest accuracy was achieved by FBA using a ccRCC-specific metabolic network that was further con-
strained by exchange fluxes determined experimentally across a panel of seven ccRCC cell lines and 
using an in silico serum-containing medium, which allows the flexible uptake of 150 different metabo-
lites (Matthews Correlation Coefficient =  0.235). The accuracy improved with stricter definitions of the 
threshold for cell death in vitro, whereas it worsened when a more restricted medium metabolite com-
position, as found in Ham’s medium, was applied in silico. This medium composition is not representa-
tive of the actual culture conditions used for the in vitro experiments, but had previously been used in 
similar studies39,61. However, FBA was found not to be predictive for gene essentialities in PC, where the 
accuracy was not better than a random predictor (MCC =  0.039, for the same scenario described above).

In general, poor predictions may be ascribed to different assumptions beyond FBA. First, we con-
sidered gene essentialities in metabolism based on the ability to carry flux towards biomass formation. 
Although this is an undisputable requirement for cancer cell proliferation, there is evidence that sur-
vival of cancer cells also depends on other metabolic functions, most notably NADPH production and 
anti-oxidant synthesis45,62. Second, we also classify a gene as essential if the in silico knockout cannot 
satisfy certain cancer type-specific metabolic requirements, here represented by the profiles of exchange 
fluxes in several cancer type-specific cell lines (one such requirement could be lactate secretion in a 
specified range of rates). The number of profiles available for a cancer type may affect the specificity of 
certain metabolic requirements (for PC, only two profiles of exchange fluxes were available), therefore 
biasing the quality of the in silico predictions when these are enforced as constraints in FBA. Third, we 
disregarded enzyme complexes because current human genome-scale metabolic models do not report 
such annotation systematically63,64. Hence, if more than one enzyme is associated to a reaction in the 
model, all genes encoding for these enzymes are automatically excluded from the in silico single-gene 
knockout and classified as redundant. Furthermore, genome-scale metabolic models such as those used 
for this study represent the best models to our knowledge in terms of metabolic reactions occurring in 
a cell, but model incompleteness is known to affect in silico predictions of essential metabolic genes59. 
Finally, the evaluation of the accuracy of the in silico prediction is also affected by the accuracy of the in 
vitro experiments. Indeed, metabolic screens using siRNA libraries may produce false negatives due to 
insufficient silencing and are liable to significant off-target effects that can both positively and negatively 
affect the viability of transfected cells.

As part of this evaluation, FBA unveiled the inherent fragility of ccRCC metabolic processes that con-
tribute to biomass growth or support certain metabolic requirements. A number of recent studies have 
evidenced the centrality of metabolism in ccRCC41,46,47, and these findings further support the notion 
that ccRCC is dependent on specific metabolic genes to sustain proliferation. At the same time, our work 
leverages on a metabolic model for ccRCC and cultured ccRCC cell lines to assess vulnerabilities for this 
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disease. Hence, this approach cannot likely capture the genomic diversity and complexity of ccRCC65,66. 
However, it should prove useful to expose metabolic liabilities that are transversal to the ccRCC pheno-
type. In this context, we describe five genes, AGPAT6, GALT, GCLC, GSS, and RRM2B, which are essen-
tial to ccRCC but are potentially dispensable in normal cell types. In addition, FBA can also be used to 
explore the mechanisms that render a gene essential in silico.

One of the mechanisms by which this essentiality arises is loss of gene redundancy. AGPAT6 is the 
only expressed enzyme isoform that can commit glycerol-3-phosphate into glycerolipid biosynthesis. 
Thus, glycerolipid synthesis is clearly a sensitive pathway in ccRCC, perhaps exacerbated by the lack of 
expression of enzymes within alternative routes due to a loss of heterozygosity in the corresponding gene 
loci, as recently suggested41. Interestingly, some members of the AGPAT family may have a causal role 
in cancer development67, and further work is required to elucidate the roles of these genes in ccRCC. 
A second possible mechanism is loss of pathway redundancy, resulting in enhanced dependence on the 
remaining reactions. This mechanism of gene essentiality revealed by FBA in ccRCC is exemplified by 
GALT, a component of the Leloir pathway. Downregulation of the enzymes of an alternative pathway 
in ccRCC induced dependence on GALT expression. In accordance with the findings of our simula-
tions, there is evidence that UGP2 and GALT homologs provide redundancy for this pathway in yeast68. 
Moreover, it is has been shown that GALT-deficient mice can sustain glycogen synthesis through the 
pathway branch catalysed by the murine homolog of UGP269, thus supporting the predicted mechanism 
that confers essentiality to GALT in ccRCC. The pivotal role of GALT in glycogen biosynthesis may in 
addition underscore the typical phenotype of ccRCC cells, which are characterised by high levels of 
glycogen accumulation. Finally, FBA using flux rates as additional constraints allowed us to identify 
gene essentialities associated with specific exchange fluxes in ccRCC cell lines. The essentiality of GCLC 
and GSS was linked to the secretion of glutamate, whereas the essentiality of RRM2B, an enzyme in 
deoxyribonucleotide metabolism, was linked to the secretion of 3-ureidopropionate. GCLC and GSS 
play a fundamental role in the intracellular detoxification of ROS by catalysing two successive steps in 
the biosynthesis of glutathione70. This biological process plays a prominent role in carcinogenesis71 and 
has been postulated to be of central importance in the rewiring of cancer metabolism45. Therefore, it is 
likely that the essentiality of GCLC and GSS in the in vitro experiments stems from their functions in 
the control of intracellular ROS levels.

Here, we find that de novo synthesis of GSH is also associated with glutamate secretion in the absence 
of other systems that can fulfil this function in ccRCC. Although this may be an artefact due to model 
incompleteness, we show that GCLC-GSS can sustain a flux distribution in which extracellular GSH is 
catabolised into cysteinylglycine and glutamate, therefore explaining the observed glutamate secretion 
in ccRCC cell lines. In a similar fashion, the consistent secretion of 3-ureidopropionate observed in 
ccRCC cell lines combined with an unmatched uptake rate of its direct precursors implies that RRM2B 
is active in supporting uridine-derived 3-ureidopropionate. RRM2B exerts its function in deoxyribonu-
cleoside biosynthesis and in DNA damage repair, and in this role it appears to hinder cancer progres-
sion72–75. Nevertheless, RRM2B function in ccRCC may be different given the lack of expression of RRM1 
and RRM2 for supporting nucleotide biosynthesis. Indeed, this pathway was found to be compromised 
uniquely in ccRCC compared to four other cancer types41.

In conclusion, in this study we show the strength and limitations of FBA for the prediction of gene 
essentiality at a genome scale in cancer metabolism. In addition, we report five metabolic genes selec-
tively essential in a particular cancer type, i.e., ccRCC. Importantly, FBA can be used to identify potential 
mechanisms by which these gene essentialities arise and thereby provide testable hypotheses. We argue 
that accounting for metabolic liabilities other than biomass generation and the integration of additional 
layers of high-throughput data may lead to an even more complete description of the essentiality land-
scape in cancer metabolism.

Materials and Methods
Cell culture and reagents. 786-O, 769-P, A498, CAKI-1, RCC4, TK10, UMRC2, and UO31 clear cell 
renal cell carcinoma (ccRCC) cell lines were maintained (and transfected) in DMEM supplemented with 
4.5 g/l D-Glucose, 0.11 g/l Sodium Pyruvate (Gibco), 4 mM Glutamine (CRUK, Clare Hall, Cell Services), 
100 Units/ml Penicillin / 100 ug/ml Streptomycin (Gibco) and 10% Fetal Bovine Serum (Gibco). For the 
RNAi screen, RCC4, UMRC2, A498, 786-O and 769-P cells were transfected in triplicates in a 96-well 
format with 37.5 nM siRNA SMARTpools (Dharmacon siGENOME) targeting the genes of interest 
using Dharmafect2 as transfection reagent. For the validation experiment for GCLC, GSS, PNP, RRM2B, 
SLC7A9, and UMPS, 786-O, A498, CAKI-1, TK10, and UO31 cells were transfected in two independent 
experiments, triplicates each in a 96-well format with 37.5 nM siRNA SMARTpools (Dharmacon siG-
ENOME) targeting the genes of interest using Dharmafect2 as transfection reagent. For the validation 
experiment for GCLC, GSS, RRM2B, and UMPS, HK-2 cells were transfected in two independent exper-
iments, triplicates each in a 96-well format with 37.5 nM siRNA SMARTpools (Dharmacon siGENOME) 
targeting the genes of interest using Dharmafect2 as transfection reagent. In all cases, after 96 h (with a 
media top up after 24 h), cells were fixed in 80% ethanol over night and subsequently stained with DAPI 
(Sigma). Cell number was determined using an ACUMEN eX3 laser-scanning fluorescent micro plate 
cytometer. For the purpose of data normalization, the non-targeting RISC-free transfection was used 
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as negative control, while ubiquitin B (UBB) and polo-like kinase 1 (PLK1) served as positive killing 
control.

Quantification of cell death. In the case of ccRCC, cell death was quantified in terms of reduction of 
cell number upon siRNA transfection in cells scaled to the effect of the negative and positive controls. For 
each replicate, 9 positive killing controls (UBB) and 12 negative controls (RISC-free) were transfected. 
In a given cell line c for a given replicate r, the cell number reduction caused by siRNA s was linearly 
interpolated as in equation (1):

CellNumberReduction
N cells N cells

N cells N cells

median

median median 1
s c r

RISCfree c r s c r

RISCfree c r UBB c r

( )
( )

=
° − °

° − ( ° ) ( )
, ,

, , ,

, ,

Then for each cell line, the mean cell number reduction is computed as the average across replicates. 
We declare a gene essential in vitro in ccRCC if the mean cell number reduction upon transfection of 
the corresponding siRNA for at least 70% of the tested cell lines is above 30%. For all these genes, we 
verified that the associated mean cell number reduction is statistically significantly greater than 0 (one 
sided t-test, p <  0.05). This data is collected in Supplementary Data 1. In the case of PC, processed data 
containing caspase activity z-score was retrieved from the study53. We declare a gene essential in vitro 
in PC if the caspase activity z-score upon transfection of the corresponding siRNA for at least 2 of the 3 
tested cell lines is above 2.5, as adopted in the original study.

Statistical tests. The Fisher’s Exact Test was carried out using the total number of tested siRNA in 
the library that could be compared to the in silico single gene-knockout test as the universe and it was 
performed in R. The 95% highest density interval (HDI) for cell number variation relative to RISC-free 
control was calculated by Bayesian estimation under the following assumptions: data are sampled from a 
t-distribution of unknown and to be estimated normality (i.e. degrees of freedom); high uncertainty on 
the prior distributions; the marginal distribution is well approximated by a Markov chain Monte Carlo 
sampling with no thinning and chain length equal to 100’000. The estimation was performed using the 
BEST R-package76 (the above assumptions are reflected by the default parameters).

Flux balance analysis. The ccRCC genome-scale metabolic model (iRenalCancer1410) was down-
loaded at www.metabolicatlas.org. The PC genome-scale metabolic model (iProstateCancer1675) was 
reconstructed using the same pipeline as for iRenalCancer141041. The models are inherently mass and 
charge balanced, and reaction directionalities to reflect thermodynamic constraints were not modified. 
Apart from changing a misannotated reaction incorrectly associated with OGDH to its correct associ-
ated gene, ODC1, no other modifications to the models were operated. The lists of metabolites availa-
ble for uptake or secretion in the serum-containing medium (FBS) or in Ham’s medium are given in 
Supplementary Data 2. For FBS, this list was compiled by merging the list of metabolites exchanged in 
cell line cultures growing in fetal bovine serum medium according to Jain and coworkers51 and other 
compounds known to be present in this medium42. In the case of ccRCC, 94 metabolites could be 
matched with a preexisting uptake reaction in the network, 6 metabolites are present in the extracellular 
compartment but did not have a preexisting uptake reaction, and 51 metabolites are only present in the 
cytosolic compartment. We added an exchange reaction for each of the latter 57 metabolites, modeled 
as energy-free diffusion (i.e. = >  metA[s/c]). In the case of PC, 92 metabolites could be matched with a 
preexisting uptake reaction in the network, 7 metabolites are present in the extracellular compartment 
but did not have a preexisting uptake reaction, and 46 metabolites are only present in the cytosolic com-
partment. We added an exchange reaction for each of the latter 53 metabolites, modeled as energy-free 
diffusion (i.e. = >  metA[s/c]). For Ham’s medium, the list was retrieved from33. In both the case of 
ccRCC and PC, 38 metabolites could be matched with a preexisting uptake reaction in the network, 1 
metabolite is present in the extracellular compartment but did not have a preexisting uptake reaction, 
and 4 metabolites are only present in the cytosolic compartment. We added an exchange reaction for 
each of the latter 5 metabolites, modeled as energy-free diffusion (i.e. = >  metA[s/c]). Unless cell line 
specific exchange fluxes were used, all the above exchange reaction can span any real value from –1000 
to +1000, while any other exchange reaction was bounded to 0 for uptake. It should be noticed that this 
is a critical step for the simulations which follow: the possibility to freely exchange these metabolites 
allows to take in account all the extremely different metabolic states that a cell may adopt in response 
to the availability of these metabolites (e.g. lactate may be either secreted as a by-product of glycolysis 
or absorbed and catabolized as a carbon source). For both ccRCC and PC, the used biomass equation 
is the built-in reaction in iRenalCancer1410, which was in turn adapted from35. This reaction accounts 
for all major macromolecular components in the biomass (e.g., membrane lipids, proteins, etc.), and the 
respective stoichiometric coefficient is reflective of the contribution of each component in 1g of cancer 
biomass. The simulation of a single gene knockout using FBA was performed by formulating the linear 
program problem (2) for each gene g in the model:
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vmax 2obj ( )

v0 3obj µ< ≤ ( )

S v 0 4⋅ = ( )

≤ ≤ + ∀ ∈ ( )v i1000 1000 {Exchange reaction indexes for FBS metabolites} 5i

α β≤ ≤ ∀ ∈ ( )v j {Exchange reaction indexes for measured metabolites} 6j j j

= ∈ ( )v 0 where r {Reaction indexes univocally encoded by gene g} 7r

where vobj is the flux through the biomass equation, µ is the experimental growth rate (for simulation 
using cell line specific fluxes) or an arbitrary number (for simulation without specific constraints on the 
exchange reaction), S is the stoichiometric matrix of the model (that is a m x n matrix where m is the 
number of metabolites and n is the number of reactions and each (i,j) entry is the stoichiometric coeffi-
cient of the metabolite corresponding to row i in the reaction corresponding to column j), v is the vector 
containing the values of the fluxes through each reaction in the model, and α  (resp. β ) are the lower 
(resp. upper) bound for the exchange flux corresponding to each metabolite measured in51 and adjusted 
by50. These bounds were implemented only in the simulations using cell line specific fluxes. For a given 
cell line, they were calculated for each measured metabolite j as σ± ·v 2j v j

, where v and vσ  are the 
mean and the standard deviation of the corresponding exchange flux in the two replicate measurements. 
In the simulations using cell line specific exchange fluxes, the biomass equation coefficients were multi-
plied by a conversion factor equal to 550 pgDW cell−1 to accommodate the fact that exchange fluxes were 
measured in fmol cell−1 h−1 instead of mmol gDW

−1 h−1 as normally assumed in genome-scale metabolic 
modeling77.

The problem was formulated using native functions in the RAVEN Toolbox78 and solved using 
MOSEK v.7. Simulation results are reported in Supplementary Data 3. All constrained simulation-ready 
models are available through the website http://www.metabolicatlas.com/.

Importantly, for the purpose of the study, the optimization part is not relevant. Indeed, we are inter-
ested on whether a feasible region exists upon the constraint imposed by the gene knockout (7), i.e. 
whether the fact that the encoded reactions cannot carry flux implies no flux in the biomass equation. 
However, if also exchange fluxes were implemented to perform FBA (6), we took in account a signifi-
cant reduction (min. 50%) of the optimum (which is upper bounded by the experimental growth rate) 
to classify a gene as essential in silico. Besides this, a gene is deemed essential in silico when there is 
no solution to (2), i.e. there cannot be found a flux distribution such that the biomass equation carries 
flux. This is indeed valuable in light of the consideration above: among all the available metabolic states 
permitted by the availability of serum metabolites, no scenario allows for a flux towards all biomass 
precursors simultaneously.

It should be noticed that, when implementing cell line specific exchange fluxes, a set of numerical 
constraints had to be neglected and converted to ± 1000. This operation is obligated by the fact that some 
measured fluxes are not consistent with the network topology. Thus, either the measured compounds 
are not used by the cellular reaction network or further experimental validation is required. It may also 
be that the model is not complete and it should be updated in an iterative fashion, a process normally 
encountered in genome-scale models79. Examples of these inconsistencies are the conjugated bile acids 
(such as glycochenodeoxycholate) or anthranilate, that were measured to be absorbed by the cancer cell 
lines in Jain et al. study51, yet there is no evidence that these compounds can be degraded in any met-
abolic reaction accounted in the model. In other cases, coupled measured fluxes are stoichiometrically 
unbalanced. To get the minimum set of constraints (6) that had to be lifted to get a feasible solution to 
the problem (2) (neglecting the constraint 7), we formulated a linear program that iteratively searches 
for the minimum sum of the fluxes that must be supplemented to each exchange flux in (6) such that 
all other constraints are satisfied while vobj >  0. In the end, all exchange fluxes in (6) that required a 
supplementary flux (i.e. the imposed bounds in the original problem would be infeasible) were instead 
bounded to ± 1000. This procedure had been repeated for each cell line specific to a certain cancer 
type, and for all successive simulations, only the exchange fluxes that were feasible in all cell lines for 
a given cancer were retained. In ccRCC, 61 and 38 exchange fluxes were coordinately bounded for all 
seven ccRCC cell lines in FBS and Ham’s medium respectively (Supplementary Fig. 12–15). In PC, 60 
and 57 exchange fluxes were coordinately bounded for all two PC cell lines in FBS and Ham’s medium 
respectively (Supplementary Fig. 16–19).
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Characterization of in silico essentiality. The test for toxicity in normal cell types was performed 
as previously described33. Briefly, 83 normal cell type genome-scale metabolic models were downloaded 
at www.metabolicatlas.org. For each model, a list of 56 metabolic tasks was simulated under the con-
straint (7) for each gene classified as essential in silico and validated as such in vitro. If no solution were 
found, the gene knockout is deemed toxic for a certain normal cell type. If more than 50% of the 83 
normal cell types show no toxicity in any metabolic task upon knockout of a gene essential in a cancer, 
than the gene is regarded non toxic to normal cells. Furthermore, if knockout of a gene essential in 
a cancer shows no toxicity in any metabolic task in the supposed cell type of origin, than the gene is 
regarded selectively essential to a cancer.

To elucidate the mechanism through which a gene is selectively essential in silico, different simulations 
were carried out according to the constraint that first resulted in an unfeasible solution:

1. In the case of genes essential using as a sole constraint to perform FBA the topology of a cancer 
metabolic network, there are two possible explanations. In the first scenario, a reaction essential 
to carry flux towards the biomass equation is encoded by a single gene in the cancer-specific 
metabolic network because all other isoenzymes are not expressed in the cancer (loss of gene 
redundancy). This was the case of AGPAT6, and it was found by constraining the flux of the en-
coded reaction to zero in the generic human metabolic network from which the ccRCC metabolic 
network topology is derived. This constraint results in an unfeasible solution using the generic 
network, suggesting that at least one of the isoenzymes must be expressed to sustain biomass 
formation. In the second scenario, there are two alternative routes to support a flux towards the 
biomass equation, each encoded by a single gene, but just one is expressed in the cancer-specific 
metabolic network (loss of pathway redundancy). This was the case of GALT. To verify this, the 
reaction encoded by GALT was constrained to zero in the generic human metabolic network, and 
then a second round of single gene-knockouts was performed using the GALT-KO generic human 
metabolic network. In the end, the double GALT-UGP2 knockout results in an unfeasible solution 
in the generic human metabolic network, indicative that UGP2 encodes for a potential alternative 
pathway to GALT that is not expressed in ccRCC.

2. In the case of genes essential when using also the exchange fluxes to perform FBA, but non 
essential when the sole topology was used as a constraint, an unfeasible solution is trivially at-
tributable to the implementation of one (or more) of these additional constraints. Therefore, for 
each essential gene, all constraints in (6) are released (set the lower and upper bound to –1000 
and + 1000 respectively) one at the time, until the metabolite whose constraint on the exchange 
flux caused unfeasibility is spotted. For GSS and GCLC, this metabolite is glutamate, while for 
RRM2B 3-ureidopropionate. Further interpretation of the individual mechanisms was achieved 
by following the fluxes around each key metabolite in the simulation, either when no knockout 
was applied or when the knockout was applied neglecting the constraint in the key metabolite 
exchange flux.

The fraction of ccRCC samples where a protein involved in any of the mechanisms above is stained 
with at least a weak signal was retrieved from the Human Protein Atlas v. 1156.
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SUMMARY 

Clear cell renal cell carcinoma (ccRCC) is the most common form of kidney cancer. Currently, no diagnostic biomarkers 
entered the clinical routine. Here, we used genome-scale metabolic modeling to pinpoint unique metabolic reprogramming in 
ccRCC, given recent findings of its involvement in ccRCC progression. Contrary to other six cancers, we discovered a strong 
coordinated regulation of the glycosaminoglycan (GAG) biosynthesis only in ccRCC. Extracellular GAGs are 
macromolecules previously implicated in tumor metastasis. We speculated that such regulation could be translated to develop 
an accessible diagnostic marker for metastatic ccRCC (mccRCC). We measured 18 independent GAG properties in plasma 
and urine of 34 mccRCC patients and 16 healthy individuals. The GAG profile was distinctively altered in mccRCC. Based 
on the data we designed three GAG markers that distinguished mccRCC from healthy individuals with accuracy ranging 
82.7% to 100%. A negative predictive value equal to 100% was validated in an independent cohort of 18 mccRCC patients 
and 9 healthy individuals. In addition, these markers were predictive independent of age, gender, BMI, or dietary intake. 
These results demonstrate that a coordinated regulation of GAG biosynthesis takes place in ccRCC and that GAG profiling in 
accessible fluids is suitable for diagnosis of mccRCC. 

Introduction 

Clear cell renal cell carcinoma (ccRCC) is the most 
common form of kidney cancer (Rini et al., 2009) and it is 
responsible for 100’000 deaths worldwide (Ferlay et al., 
2010). Roughly 50% of   ccRCC are expected to develop 
metastatic disease, which is usually incurable. In sharp 
contrast to early diagnosed ccRCC, the median survival of 
metastatic patients is significantly worse (Gupta et al., 
2008), even though the prognosis has improved after the 
introduction of modern targeted therapies (Wahlgren et 
al., 2013). Recent trials emplyoing sequential use of the 
tyrosine-kinase inhibitor sunitinib and mTOR inhibitor 
everolimus reported a median survival that exceeded 30 
months (Motzer et al., 2015). However, no biomarker is 
currently approved for diagnosis and monitoring of 
metastatic ccRCC (Jonasch et al., 2012; Moch et al., 
2014).  

The search for molecular biomarkers has focused on 
ccRCC genetics and angiogenesis, but none of these 
biomarkers have entered clinical routine, nor are easily 
accessible or indicative of metastasis (Finley et al., 2011; 
Moch et al., 2014). On the other hand, other molecular 
processes prominent in ccRCC may fulfill this lack. In 
this sense, accumulating evidence suggests that the 
proliferation and survival of cancer cells rely upon a shift 
in their metabolism (Schulze and Harris, 2013; Vander 
Heiden et al., 2009; Ward and Thompson, 2012). In 
particular, ccRCC has been recently proved to feature a 
strong regulation and dependence on a distinctive 
metabolic reprogramming, which is pivotal to its 
progression (Creighton et al., 2013; Gatto et al., 2015; 
Gatto et al., 2014; Li et al., 2014). These outstanding 
metabolic changes may be of clinical interest since they 
have the potential to be translated as ccRCC biomarkers. 
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Under these premises, we here follow up on our recent 
study that revealed a deviating regulation of metabolism 
in ccRCC in contrast to seven common epithelial tumors 
(Gatto et al., 2014) and further computationally 
characterized metabolic regulation in ccRCC leveraging 
on a larger number of samples and using state-of-the-art 
genome-scale metabolic modeling (Bordbar et al., 2014; 
Jerby and Ruppin, 2012; Mardinoglu et al., 2013; 
Mardinoglu and Nielsen, 2015). As a result, we uncovered 
a previously unreported coordinated regulation of 
glycosaminoglycan (GAG) biosynthesis, exacerbated in 
metastasis. This led us to speculate that such regulation 
may be detectable in metastatic ccRCC. Hence, we 
designed an observational study to measure GAG profiles 
in accessible fluids of metastatic ccRCC patients and 
sought to characterize the suitability of GAG profiles as a 
diagnostic marker for the disease. 

Results  

Metabolic modeling reveals a coordinated regulation 
of glycosaminoglycan biosynthesis unique to clear cell 
renal cell carcinoma 
Our recent study suggests that metabolic reprogramming 
in clear cell renal cell carcinoma (ccRCC) is unique likely 
due to genetic alterations in the tumor progression (Gatto 
et al., 2014). The exceptionality of metabolic regulation in 
ccRCC may have important clinical implications as a 
potential molecular biomarker. Thus, we sought to fully 
characterize metabolic regulation in ccRCC 
computationally. We retrieved a larger number of gene 
expression profiles from The Cancer Genome Atlas 
(TCGA) than in our previous study (481 tumor samples 
vs. 71 tumor-adjacent normal samples, here simply 
referred to as normal, Table S1) and employed two recent 
methods in genome-scale metabolic modeling named 
Piano (Varemo et al., 2013) and Kiwi (Varemo et al., 
2014) to pinpoint respectively deregulated metabolic 
pathways or connected components in the metabolic 
network of ccRCC. When we analyzed differential gene 
expression in ccRCC vs. normal samples using these 
methods, we observed, in line with previous studies 
(Creighton et al., 2013; Gatto et al., 2014), widespread 
down-regulation of many interconnected components in 
the tricarboxylic acid cycle and branched-chain amino 

acid metabolism and up-regulation of components in the 
pentose phosphate pathway (Fig. S1-2). However, the 
analyses also returned a previously unreported sub-
network of metabolites that comprises precursors of 
chondroitin and heparan sulfates (Fig. 1A). Furthermore, 
the corresponding biosynthetic pathways display a distinct 
and opposite regulation in ccRCC vs. normal samples 
(Fig. S1). Chondroitin (CS) and heparan (HS) sulfates are 
glycosaminoglycans (GAGs) that share a common 
biosynthetic route in the linkage to the core protein, but 
thereafter they differ in the polymerization: CS repeating 
disaccharide is constituted by N-acetylgalactosamine and 
glucuronic acid residues, while HS repeating disaccharide 
is constituted by N-acetylglucosamine and glucuronic acid 
residues (Kreuger and Kjellen, 2012; Mikami and 
Kitagawa, 2013). In ccRCC, we observed a coordinated 
regulation of GAG biosynthesis, defined by a substantial 
up-regulation of most genes specific to CS biosynthesis 
(11/13) and a concurrent down-regulation of genes 
specific to HS biosynthesis (8/13), pointing to a relative 
change in GAG disaccharide composition, sulfation, and 
chain length in ccRCC (Fig. 1B, Table S2). We confirmed 
such coordinated regulation of GAG biosynthesis in two 
independent datasets that compared gene expression in 
ccRCC vs. normal samples (Pena-Llopis et al., 2012; 
Wang et al., 2009), with high and significant correlations 
between expression fold-changes in these studies and the 
TCGA samples (r = 0.87-0.89, Fig. 1C). To verify to 
which extent this regulatory pattern is ccRCC-specific, we 
repeated an analogous analysis for six other epithelial 
cancer types for which at least 20 normal samples were 
found in The Cancer Genome Atlas (breast invasive 
carcinoma, colon adenocarcinoma, head and neck 
squamous cell carcinoma, lung adenocarcinoma, lung 
squamous cell carcinoma, and uterine corpus endometrial 
carcinoma). None of these cancers displayed the same 
coordinated pattern as in ccRCC, which is a clear outlier 
according to unsupervised hierarchical clustering, even 
though we found cancer type-dependent regulation of 
individual enzymes involved in GAG biosynthesis (Fig. 
1D, Table S2). In addition, we never observed both the 
CS and the HS biosynthesis pathway among the top 
ranked regulated pathways in any of these cancers types 
(Fig. S3). 

  



  
 
  

  
Figure 1 – Coordinated regulation of glycosaminoglycan biosynthesis in ccRCC vs. normal kidney. A) Genome-scale metabolic modeling using Kiwi 
reveals a coordinated transcriptional regulation in a subnetwork of metabolites belonging to the chondroitin sulfate and heparin sulfate biosynthetic pathway. 
The node color indicates the general direction of regulation of the genes associated with the metabolite (red – up-regulation; blue – down-regulation). See 
also Fig. S1-2 for further gene expression analysis in ccRCC at the metabolite and pathway level respectively. B) Pathway-view of glycosaminoglycan 
biosynthesis in ccRCC. Each box shows the enzyme(s) carrying out a given reaction in the pathway. The color represents the log10 fold-change in ccRCC vs. 
normal for the enzyme-coding gene, while the symbol next to each box reports the significance for the corresponding gene regulation (in terms of false 
discovery rate). The pathway has been drawn according to KEGG gene associations (Note that genes related to dermatan sulfate biosynthesis or sulfation at 
C3 in heparan sulfate are not shown, the latter event being rarely observed (Thacker et al., 2014)). Solid arrows indicate addition of a molecule, dashed lines 
indicate conversion of a molecule, and dotted lines indicate the final disaccharide composition up to that point. C) Correlation of gene expression log2 fold-
changes in the glycosaminoglycan biosynthesis pathway between TCGA samples (y-axis) and two independent studies (GSE36986 and GSE14762, (Pena-
Llopis et al., 2012; Wang et al., 2009)). D) Gene expression log2 fold-changes in the glycosaminoglycan biosynthesis pathway in ccRCC as opposed to other 
cancers vs. matched normal tissues. Key: HNSC – Head and neck squamous cell carcinoma; BRCA – Breast invasive carcinoma; COAD – Colon 
adenocarcinoma; LUAD – Lung adenocarcinoma; LUSC – Lung squamous cell carcinoma; UCEC – Uterine corpus endometrial carcinoma. See also Fig. S3 
for gene expression analysis in other cancers at the pathway level. 

In order to evaluate if the coordinated regulation of GAG 
biosynthesis is represented also at the level of protein 
expression, we used immunohistochemistry of a ccRCC 
tissue microarray to detect the presence of three 
representative proteins characteristic for the pathway 
(CHPF2 in CS biosynthesis and HS6ST2 and EXTL1 in 

HS biosynthesis) in ccRCC vs. normal kidney samples 
(Fig. 2A). In accordance with gene expression changes, 
CHP2 displayed strong staining in all tested tumor 
samples (positive in 21 of 21 samples) and only weak and 
likely unspecific staining in the kidney proximal tubule 
cells (0/2); HS6ST2 showed no or weak staining in all 
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tested tumor samples (positive in 0 of 32) while it was 
detected in both the podocytes in the kidney glomeruli 
and the endothelial cells of larger vessels (2/2); and 
EXTL1 was undetected in 96% of the tested tumor 
samples (positive in 1 of 27), but it stained strongly in the 
kidney collecting duct cells (2/2) (representative samples 
in Fig. 2B). Taken together, these results suggest that a 
coordinated regulation of GAG biosynthesis is a 
prominent metabolic event occurring exquisitely in the 
kidney during ccRCC transformation. 
 

 
Figure 2 – Immunohistochemical staining of three proteins in 
glycosaminoglycan biosynthesis in ccRCC vs. normal kidney. A) 
Fraction of samples positive for CHP2, HS6ST2, and EXTL1 in ccRCC 
(21 to 27 tissue samples) vs. normal kidney (2 samples). Results are 
presented as the consensus of staining performed in duplicates. B) 
Staining for CHP2, HS6ST2, and EXTL1 in representative ccRCC and 
normal samples. 
 

Altered regulation of glycosaminoglycan biosynthesis 
is exacerbated in metastasis and it is detectable in 
patients’ urine and plasma 
CS and HS have been long implicated in the regulation of 
angiogenesis, adhesion, invasion, and migration, key steps 
in the metastatic cascade (Afratis et al., 2012; Jackson et 
al., 1991). We extended our differential gene expression 

analysis to verify whether genes in GAG biosynthesis 
showed further regulation in ccRCC patients with 
metastasis. We found that 11 genes in GAG biosynthesis 
were differentially regulated in metastasis, exacerbating 
the overexpression of CS-associated genes and the 
repression of HS-associated genes (Fig. S4). This is 
suggestive that a coordinated regulation of GAG 
biosynthesis is an event accentuated with metastasis. 
While the assembly of GAGs chains takes place 
intracellularly, the completed proteoglycan is secreted in 
the extracellular matrix (Silbert and Sugumaran, 2002). 
Hence, all considered, we speculated that not only 
eventual changes in GAGs due to ccRCC progression 
might be reflected in kidney-proximal fluids, but also that 
these changes should be easier to detect in metastatic 
ccRCC (mccRCC) patients. This speculation leverages on 
the fact that variations in GAG concentration and 
composition have been observed in the proximal fluids of 
other diseases in which GAGs were implicated (Anower 
et al., 2013; Mannello et al., 2014; Mannello et al., 2015; 
Schmidt et al., 2014; Volpi et al., 2015). 
 
In order to verify whether changes in the GAG profile 
occur in mccRCC and can be measured in accessible body 
fluids, we recruited a discovery cohort of 50 subjects, 
consisting of 34 patients with mccRCC and 16 healthy 
individuals (Table 1, Table S3). Plasma and urine samples 
were taken from all subjects, except in 21 mccRCC 
patients for whom only plasma samples were available. 
CS and HS concentration and their disaccharide 
composition were quantified in the samples using liquid 
chromatography with on-line electrospray ionization mass 
spectrometry (ESI-MS). In total, 18 independent GAG 
properties were measured in every fluid sample (note that 
the GAG charge is the sum of all sulfated disaccharide 
fractions). The collection of all these data points defines a 
GAG profile. We observed remarkable differences 
between the GAG profile of mccRCC patients compared 
to healthy individuals, both in the plasma and in the urine 
(Fig. 3A). Principal component analysis (PCA) of GAG 
profiles that combine plasma and urine measurements 
revealed that mccRCC patients clearly separate from 
healthy individuals (71% of variance is explained along 
the first component, Fig. 3B). Similar separations were 
achieved by using solely measurements in the plasma 
(81% variance) or in the urine (63% variance). These 
results indicate that mccRCC entails alterations in 
systemic GAG composition that are markedly distinctive 
compared to healthy individuals. 



  
 
  

 
Figure 3 – The glycosaminoglycan plasma and urine profile of mccRCC patients is markedly distinct than healthy individuals. A) The 
glycosaminoglycan profile of mccRCC patients (grey boxplots) and healthy individuals (orange boxplots) in the plasma (top) and urine (bottom). Each 
profile comprises 18 independent measurements of GAGs (9 related to CS and 9 related to HS), which refer to the total concentration and the disaccharide 
composition. B) Principal component analysis of sample GAG profiles using measurements from plasma, urine, or both. 
 
The changes in the plasma and urine GAG profile here 
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ish the disease from an healthy state. We utilized Lasso 
penalized logistic regression (Tibshirani, 1996) with 
leave-one-out cross-validation to select robust GAG 
properties that are most predictive of the clinical outcome 
(i.e. mccRCC vs. healthy). A marker was subsequently 
designed as a ratio, where the numerator is the sum of the 
properties associated with mccRCC and the denominator 
is the sum of the properties associated with the healthy 
state. Each term was normalized using the regression 
coefficients. We derived three potential disease markers, 
based on either plasma or urine or combined 
measurements: 
 

Plasma!score = 6!!!" + !!!"!
3
10

4!!!"
6!!!" + [!"!!"]

 

Urine!score = !"6!!!" + 60 ∙ Charge!!"
4!!!"  

Combined!score = mean(Plasma!score,Urine!score) 
 
where terms in brackets represent the fraction of the 
disaccharide for the corresponding GAG (the 
abbreviations describe different sulfation patterns for CS 
and HS as per Fig. 1B), !!!"! is the total concentration of 
CS (in µg/mL) and Charge!!" is the total fraction of 
sulfated disaccharides of HS. We then calculated the three 
scores for each sample and observed that mccRCC 
samples have recurrently elevated scores with respect to 
healthy samples (Fig. 4A). We computed a significant 
non-null mean difference in all three scores between the 
two groups using robust Bayesian estimation. The mean 
difference is equal to 2.15 for the combined score (95% 
High Density Interval [HDI] 1.72 to 2.60), 2.49 for the 
plasma score (95% HDI 1.94 to 3.05), and 0.79 for the 
urine score (95% HDI 0.52 to 1.06). The performance of 
the three markers was evaluated using the receiver-
operating-characteristic (ROC) curves, and the area under 
the curve (AUC) was found to be 1 (perfect classifier) in 
the case of the combined and plasma score, and 0.966 for 
the urine score (Fig. 4B, Table 2). A straightforward 
clinical implementation of these markers would be to 
monitor mccRCC patients after surgery and diagnose a 
recurrence using a simple accessible test in adjunct to or 
in substitution of standard radiological tests. Thus, from 
each ROC curve, we computed a score cut-off that 
maximizes the negative predictive value (NPV) of the 
marker (Lopez-Raton et al., 2014) (Table 2). Taken 
together, these findings demonstrate that alterations in 
plasma and urine GAG composition occurring in 

mccRCC can be summarized into scores. In turn, these 
scores accurately distinguished diseased from healthy 
individuals.  
 
In order to validate whether these scores have a 
reproducible accuracy in an independent cohort, we 
recruited 27 subjects, consisting of 18 patients with 
mccRCC and 9 healthy individuals (Table 1, Table S4). 
Plasma and urine samples were taken from all subjects, 
except in 11 mccRCC patients for whom only plasma 
samples were available. We analyzed the three markers 
for each individual and computed the corresponding 
scores. The scores were remarkably higher in mccRCC 
compared to healthy also in the validation cohort (Fig. 
4C). We computed an AUC value equal to 1 for all three 
markers (Fig. 4D). Also, the NPV at the previously 
determined cut-off score was 100% for all markers (Table 
2). This evidence strongly suggests that the three markers 
have the potential to indicate the occurrence of mccRCC 
by means of an accessible analytical test. Nevertheless, a 
rigorous validation of this test as a tool for mccRCC 
follow-up requires the calculation of the scores in subjects 
previously diagnosed with mccRCC but with no evidence 
of disease. Indeed, we cannot rule out that previous 
exposure to the disease may have prolonged effects on the 
systemic GAG composition, thus altering the scores and 
weakening their clinical utility. Therefore, we analyzed 
the markers and calculated the corresponding scores in a 
cohort of 8 individuals diagnosed with mccRCC but with 
no evidence of disease at the time of sampling. We 
observed a remarkable decrease in the scores from the 
expected value in mccRCC, even though the accuracy of 
the classification differed among scores. The highest 
accuracy was achieved for the plasma score, where the 
computed scores lied below the cut-off in 7 of 8 cases and 
hence 87.5% of the subjects were correctly classified as 
healthy (Fig. 5). The accuracy was lowest in the case of 
the urine scores, with only 2 of 8 subjects (25%) were 
classified as healthy. Nevertheless, it is noteworthy that, 
with regards to the scope for which the cut-off scores 
were derived, at least one subject was correctly identified 
as healthy (the NPV for the test was therefore 100% for 
all three scores, which is trivial given the cohort only 
includes negative controls). Even though the sample size 
might be too small for meaningful statistics, these results 
argue that plasma and urine GAG composition can be 
used as a robust and accurate diagnostic biomarker for the 
occurrence of mccRCC.  
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Figure 4 – The glycosaminoglycan profile can be summarized in three scores (based on measurements in the plasma, urine, or both) that can 
accurately predict occurrence of mccRCC. A) Plasma, urine, and combined scores in mccRCC patients (grey boxplots) and healthy individuals (orange 
boxplots) belonging to the discovery cohort (34 samples vs. 17, respectively). B) Receiver-operating-characteristic (ROC) curves in the classification of 
samples of the discovery cohort as either mccRCC or healthy based on the combined, plasma, and urine scores. For each marker, an optimal cut-off scores 
that maximizes the negative predictive value is indicated. C) Plasma, urine, and combined scores in mccRCC patients (grey boxplots) and healthy 
individuals (orange boxplots) belonging to the validation cohort (18 samples vs. 9, respectively). D) ROC curves in the classification of samples of the 
validation cohort as either mccRCC or healthy based on the combined, plasma, and urine scores. See also Fig. S5 for score correlations with confounding 
factors.
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Glycosaminoglycan composition in plasma and urine 
is distinctively different and predictive of metastatic 
clear cell renal cell carcinoma regardless of 
confounding factors 
We sought to identify the extent to which the measured 
systemic GAG alterations are purely attributable to 
ccRCC progression, as suggested by the underlying 
transcriptional regulation, or are also dependent on other 
confounding factors. Therefore, we gathered clinical and 
dietary information, which may confound the association 
of the scores with the clinical outcome, for 33 individuals 
(17 mccRCC and 16 healthy, Table S3). As reported in 
Table 1, we observed an uneven distribution of some 
baseline characteristics, for example gender, pasta 
consumption and alcohol consumption. Therefore, we 
tested whether the clinical outcome could be purely 
inferred by some of the confounding factors rather than 
the marker scores. First, we determined which are the 
most biased factors between the mccRCC vs. healthy 
groups. To this end, we regressed the clinical outcome 
based on the confounding factors and the combined score, 
using Lasso penalized logistic regression. This analysis 
selected four potentially relevant confounding factors: 
age, weekly consumption of pasta and rice, and use of 
alcohol. Then, we performed analysis of covariance using 
logistic regression to test the strength of the association 
between the clinical outcome and the combined score 
using the four confounding factors as covariates. Notably, 
none of the covariates have a significant contribution in 
the regression of the clinical outcome (p = 0.27 to and 
0.44, Fig S5). In addition, we calculated that the logistic 
regression model based solely on the combined score is 
the most likely (p = 99.2%) according to the minimum 
Kullback–Leibler divergence criterion: the Akaike 
information criterion for the regression based on the sole 
combined score is significantly lower than for the 
regression based also on the four covariates (7.8 vs. 17.5, 
respectively). A similar conclusion was reached for the 
plasma score (6.0 vs. 17.9), but not for the urine score 
(23.0 vs. 17.5), where pasta consumption displayed a 
significant effect in the regression of the clinical outcome 
(p = 0.03). Taken together, these results indicate that the 
combined and plasma score alone (but not the urine score) 
have a strong association with the clinical outcome 
regardless of any here-considered confounding factor, 
prompting use of GAG measurements as unbiased 
predictors for occurrence of mccRCC.  
 

 
 
Figure 5 – Combined, plasma, and urine scores in subjects 
previously diagnosed with mccRCC but with no evidence of disease 
at the time of sampling. The horizontal lines represent the optimal cut-
off scores at which a subject is classified as either mccRCC or healthy. 
 
Finally, we explored if systemic therapy has an effect on 
the marker scores given that these are calculated by 
profiling body fluids. We limited our analysis to the 
patients for which solely plasma samples were collected 
(and hence we checked solely the effect on the plasma 
scores), because for this group we noticed a comparable 
number of treated (n = 19) and untreated (n = 33) patients. 
We did not observe any significant correlation between 
the plasma score and the use of systemic therapy, based 
on a linear regression of the score on the treatment status 
of the sample (p = 0.518) and the type of treatment 
(sunitinib vs. other regiments, p = 0.508). Overall, these 
analyses of covariance show that GAG measurements in 
the form of the proposed scores can robustly predict the 
occurrence of mccRCC despite baseline and treatment 
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differences across patients. This robustness is likely due 
to a coordinated regulation of GAG biosynthesis intrinsic 
to ccRCC progression, which is mirrored at the level of 
kidney-adjacent fluids. 

Discussion  
This study reveals that a coordinated regulation of GAG 
biosynthesis that features a concurrent up-regulation of 
the branch leading to CS formation and down-regulation 
of the branch leading to HS formation is a prominent 
transcriptional event in ccRCC. Also, many pathway-
associated genes are further up- or down-regulated in 
metastasis. This discovery was enabled by leveraging on 
an increased number of samples and recent advances in 
metabolic network analysis: indeed, traditional gene-set 
enrichment analysis likely misses the distinctive 
regulation of the two branches within the gene-set, 
because the opposite fold-changes would cancel each 
other out. Altered expression of CS and HS, particularly 
in the glycan composition and sulfation, has been 
implicated in the promotion of migration, metastasis, and 
angiogenesis in a number of tumor models, including 
skin(Smetsers et al., 2004), lung(Mizumoto et al., 2012), 
brain(Wade et al., 2013), and breast(Fernandez-Vega et 
al., 2013); however, to our knowledge, this is the first 
report of an extensive, consistent, and coordinated 
regulation of the whole biological process of GAG 
biosynthesis in a cancer type. The relevance of such 
precise regulation of GAGs in ccRCC may be attributed 
to their role in the remodeling of the extracellular matrix 
that strongly depends on their composition and 
abundance(Afratis et al., 2012). For example, a 
chondroitin sulfate-rich matrix is linked to the 
development of self-contained and defined lesions in 
lower grade glioma (as opposed to microscopic 
infiltrations typical of glioblastomas)(Silver et al., 2013), 
a tumor growth model closely resembled by ccRCC(Rini 
et al., 2009). However, it remains to be explored how this 
regulatory program is mechanistically linked to metastasis 
rather than representing a coordinated metabolic event 
attributable to the remodeling of the kidney caused by the 
disease. 
 
Since GAGs localize and act in the extracellular matrix, 
we assumed that changes in their regulation reflect 
changes in their profile in body fluids proximal to the 
kidney, e.g. blood and urine, as seen in other pathologies 
(Anower et al., 2013; Mannello et al., 2014; Mannello et 
al., 2015; Schmidt et al., 2014; Volpi et al., 2015). In 

particular, this behavior should be exacerbated in 
metastasis. Currently, there is no diagnostic biomarker 
that has entered routine practice for metastatic ccRCC 
(Jonasch et al., 2012; Moch et al., 2014). At the same 
time, the metastatic disease is invariably incurable, 
although rare complete responses were reported in 
association with oncological targeted therapies with or 
without metastasectomy (Albiges et al., 2012). Therefore 
it would undoubtedly represent an important clinical 
advancement if changes in the GAG profile could 
constitute an indicator of occurrence of the disease. The 
availability of such test would be valuable for a number of 
medical decisions: to monitor ccRCC before and after 
surgery or systemic treatment; to rule out the relapse of 
the disease also during a longer period of time after which 
a patient is typically declared cured; to assess the 
occurrence of ccRCC in a population at risk, such as 
genetically predisposed individuals; to ascertain whether a 
metastasis is due to ccRCC or other neoplasms; and to 
follow treatment response in mccRCC. In consideration of 
this, we designed three markers that are distinctive of 
occurrence of mccRCC, that are calculated based on 
measurements in accessible fluids, that are predictive of 
the clinical outcome independently of the here-considered 
confounding factors, and that, most importantly, are 
accurate and robust predictor of the disease.  
 
The plasma and urine GAG profiles loosely resemble the 
expected pattern from the underlying transcriptional 
regulation, i.e. an increased output of CS with respect to 
HS in ccRCC. Noteworthy, a previous study examined 
CS/HS concentration in low tumor stage ccRCC tissue 
samples (Batista et al., 2012) and re-elaboration of this 
data to highlight the CS/HS ratio delineated a similar 
trend (Fig. S6). At the same time, the GAG profiles reveal 
some novel biological insights attributable to the 
occurrence of this cancer type. The GAG composition in 
the plasma of healthy individuals is typically not affected 
by any tissue. Here, we observed a systemic alteration of 
GAG composition concomitant to metastatic ccRCC. The 
enrichment of 4s- and 6s CS and 6s HS in mccRCC 
samples is strikingly reminiscent of the GAG composition 
of lymphocytes (Shao et al., 2013). It is therefore 
tempting to speculate that infiltration of the immune 
system in mccRCC could lie behind the observed 
transcriptional regulation in the tumor. In the urine, the 
GAG composition in healthy individuals is not as well 
characterized. The alterations here reported in the GAG 
profile of mccRCC samples might reflect a progressive 
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damaging of cells in the kidney glorumeli (McCarthy and 
Wassenhove-McCarthy, 2012; Miner et al., 2011). 
Collectively, these evidences seem to underscore the 
importance of alterations in GAGs in the progression of 
ccRCC. 
 
So far, among the major difficulties that have impaired 
biomarker discovery and its translation in the clinical 
practice are the detection of targets in accessible samples 
and the reproducibility of results (Sawyers, 2008). Here, 
we provide evidence for a plasmatic and/or urinary 
marker of metastatic ccRCC that is supported by an 
intensely and consistently regulated biological process in 
ccRCC samples. We envision that future longitudinal 
studies based on our findings may establish these markers 
for a diverse range of diagnostic tools in the clinical 
management of ccRCC. 

Experimental Procedures 
Gene expression analysis. RNAseq gene expression 
profiles for 481 ccRCC primary tumor and 71 tumor-
adjacent normal-like samples were retrieved at The 
Cancer Genome Atlas (TCGA) (Table S1). Differential 
expression analysis for ccRCC vs. normal was performed 
using voom(Law et al., 2014). 2090 genes with no 
annotation (3%) or no more than 10 counts in less than 
10% of the samples (7%) were discarded. The effect of 
metastasis was accounted by adding the metastatic status 
of each sample as a covariate in the linear model used in 
voom. Two independent microarray-generated datasets 
where retrieved in GEO (GSE36895 (Pena-Llopis et al., 
2012) and GSE14762 (Wang et al., 2009)) and the 
differential expression analysis for ccRCC vs. normal was 
performed using limma (Smyth, 2004). The significance 
for changes in gene expression using either RNAseq or 
microarray data was tested using empirical Bayes 
estimation on a linear model for a given comparison (in 
the case of RNAseq the count variance was moderated as 
proposed in voom (Law et al., 2014)). Consensus gene-set 
enrichment analysis (GSA) using piano (Varemo et al., 
2013) was performed using as gene-sets either KEGG 
pathways or metabolites (i.e., a gene-set is the list of 
reaction-encoding genes that involve a given metabolite 
(Patil and Nielsen, 2005)), where the gene-set p-value is 
defined as the median p-value for the following GSA 
methods: Fisher’s test, Stouffer’s test, reporter test, tail-
strength test, mean, and median. The significance of a 
gene-set for each GSA method was tested using a 
permutation test by shuffling gene labels 10’000 times. 

The gene-sets ranked among the top 30 by most GSA 
methods are shown in a heatmap that is hierarchically 
clustered. The differential gene expression analysis and 
multiple gene-set analysis (limited to KEGG pathways) 
was then repeated for six other cancer types (breast 
invasive carcinoma, colon adenocarcinoma, head and 
neck squamous cell carcinoma, lung adenocarcinoma, 
lung squamous cell carcinoma, and uterine corpus 
endometrial carcinoma) compared to matched tumor-
adjacent normal samples (also retrieved at TCGA, Table 
S1). All analyzed cancer types were subsequently 
hierarchically clustered upon log2 fold-change in the 
expression of genes belonging to the KEGG 
glycosaminoglycan biosynthesis pathways (excluding 
genes belonging to dermatan sulfate biosynthesis and 
sulfotransferases on the C3 of heparan sulfate) compared 
to matched normal samples. Gene-set relatedness between 
gene-sets was computed in terms of the underlying 
network using Kiwi (Väremo et al., 2014), where gene-set 
were considered related if the mutual shortest path length 
is lesser than 2 in the network (to increase interpretability, 
gene-sets with more than 10 genes were neglected). In the 
case of metabolites, the gene-set network was extracted 
from the genome-scale metabolic model HMR2 (Agren et 
al., 2014). All the above methods were implemented 
using the respective R-packages, except Kiwi that is a 
Python module. 
 
Immunohistochemical staining. A tissue microarray 
containing 32 ccRCC samples and 2 normal kidney 
samples in duplicates was prepared and used for 
immunohistochemistry. An experienced urological 
pathologist selected all cases. The ethical approval was 
granted by the ethical committee at Lund University 
(LU289-07). Tissue sections of 4µm were deparaffinized 
and rehydrated according to standard protocols. Antigen 
retrieval was performed using pressure cooking of the 
samples for 20 minutes in 10 mmol/L citrate buffer, pH 
6.0. Immunohistochemical staining was performed using 
a Dako Techmate 500 unit, according to the 
manufacturer’s instructions (Dako, Glostrup, Denmark). 
Antibodies and dilutions used were HPA020992 (CHP2 
1:35), HPA034625 (HS6ST2 1:125) and HPA037749 
(EXTL1 1:35), all from Atlas Antibodies AB, Stockholm, 
Sweden. Only tumor samples where both duplicates could 
be scored were included in the analysis (21 for CHP2, 32 
for HS6ST2 and 27 for EXTL1).  
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Blood and urine analysis. In the discovery cohort, 
plasma and urine samples were obtained from 34 patients 
with metastatic clear cell renal carcinoma in two sites, 
IOV-IRCCS, Padova, Italy and Sahlgrenska University 
Hospital, Göteborg, Sweden. For 21 patients, only plasma 
samples were obtained. A control group was formed using 
16 healthy individuals without any renal or liver 
malignancy, nor inflammatory pathologies. In the 
validation cohort, plasma and urine samples were 
obtained from 18 patients with metastatic clear cell renal 
carcinoma in two sites, IOV-IRCCS, Padova, Italy and 
Sahlgrenska University Hospital, Göteborg, Sweden. For 
11 patients, only plasma samples were obtained. A control 
group was formed using 9 healthy individuals without any 
renal or liver malignancy, nor inflammatory pathologies. 
All subjects provided written informed consent. Clinical 
and dietary information is available in Table S3. The 
present observational study was notified to the Ethics 
Committee at IOV-IRCCS, Padova, Italy on January 
2013. The approval to collect and analyze blood samples 
at the Sahlgrenska University Hospital, Göteborg, Sweden 
was obtained from the Regional Ethics Board of Västra  
Götaland, Sweden. Whole blood samples were collected 
in EDTA-coated tubes. The tubes were centrifuged 
(2,500g for 15 minutes at 4 °C) and the plasma extracted 
and collected in a separate tube. Urine were collected in 
polypropilene tubes. The samples were stored at -80°C 
until they were shipped for analysis in dry ice. The 
present study was carried out with compliance to the 
regulations of local Human Ethics Research Committee at 
the IOV-IRCCS, Padova, Italy. The samples were 
analyzed using HPLC with on-line electrospray ionization 
mass spectrometry (ESI-MS) as described in (Volpi et al., 
2014; Volpi and Linhardt, 2010). Sixteen independent 
GAG properties were measured in each sample (either 
plasmatic or urinary): CS concentration, HS 
concentration, and fractions of disaccharide composition 
for both CS and HS. The charge is the sum over all 
sulfated disaccharide fractions. Principal component 
analysis was performed on available GAG properties for 
three cases: only plasmatic, only urinary, or both 
plasmatic and urinary (combined). Principal component 
analysis was implemented using R-package ade4 (Dray 
and Dufour, 2007)  (centering was performed by the 
mean). All measurements are available in Table S3.  
 
Marker design. To design the markers in the only 
plasmatic or in the only urinary case, we used Lasso 
penalized logistic regression (Tibshirani, 1996) with 

leave-one-out cross-validation to select those GAG 
properties that are most predictive of the clinical outcome 
(i.e. mccRCC vs. healthy) at the optimal Lasso penalty 
value. This was calculated using the glmnet R-package 
(Friedman et al., 2010) as the penalty value for which the 
cross-validation error was within 1 standard error of the 
minimum. The markers were built as the ratio between the 
sum of the GAG properties robustly predictive of 
mccRCC over the sum of the GAG properties robustly 
predictive of healthy state. Each property value was 
normalized using the respective regression coefficient 
(rounded to the nearest rational number). The marker for 
the combined case was taken as the mean of the so-
designed plasmatic and urinary markers. The highest 
density interval (HDI) for the mean difference in marker 
scores between mccRCC vs. healthy was calculated using 
Bayesian estimation under the following assumptions: 
scores are sampled from a t-distribution of unknown and 
to be estimated normality (i.e. degrees of freedom); high 
uncertainty on the prior distributions; the marginal 
distribution is well approximated by a Markov chain 
Monte Carlo sampling with no thinning and chain length 
equal to 100’000. The estimation was performed using 
BEST (Kruschke, 2013) (the above assumptions are 
reflected by the default parameters). Bayesian estimation 
was preferred over the widely used t-test since it provides 
a robust and reliable estimation of mean difference even 
under uncertainty of the underlying score distribution for 
the two groups (that is the case when the number of 
samples is limited) (Nuzzo, 2014). 
 
Accuracy metrics. For each marker (plasma, urine, or 
combined), we evaluated its performance in the binary 
classification of a sample as either mccRCC or healthy at 
varying threshold scores by deriving the receiver-
operating-characteristic (ROC) curves. We measured the 
accuracy of each marker as the area under the curve 
(AUC) of its ROC curve (AUC is 1 for a perfect classifier 
and 0.5 for a random classifier). We selected as a 
potential cut-off value for a given marker the score for 
which the negative predictive value was maximum, i.e. a 
sample whose marker score is below this cut-off value has 
the maximum probability of not being mccRCC. We 
assumed a prevalence equal to the proportion of mccRCC 
samples in each cohort. The ROC curves were calculated 
using the pROC R-package (Robin et al., 2011), while the 
optimal cut-off using the OptimalCutpoints R-package 
(Lopez-Raton et al., 2014). 
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Analysis of covariance. The analysis of covariance was 
performed using logistic regression on the clinical 
outcome (mccRCC vs. control) on selected covariates 
among those reported in the clinical and dietary 
information in Table S3. These covariates were selected 
using Lasso penalized logistic regression with leave-one-
out cross-validation as the most predictive of the clinical 
outcome at the optimal Lasso penalty value (chosen as 
described in Marker design). These covariates are age, 
weekly consumption of pasta and rice, and use of alcohol. 
Next, we performed logistic regression on the clinical 
outcome based on the combined score and the four 
selected covariates. The significance of each coefficient 
was tested using the Wald z-statistics for the hypothesis 
that the corresponding parameter is zero. The same 
procedure was followed to check the effect of systemic 
therapy as covariate, but using only plasma samples to 
regress the clinical outcome (since only for such sub-
cohort there were enough patients that did not undergo 
any systemic therapy). In this case, either only one 
covariate was used to indicate the presence or absence of 
undergoing therapy, or a second covariate to account for 
the specific effect of sunitinib was added. Logistic 
regression was implemented adopting the Firth bias-
reduction method using the brglm R-package. The 
performance of the two alternative models for logistic 
regression (either combined score + age + weekly 
consumption of pasta + weekly consumption of rice + use 
of alcohol; or combined score) was evaluated according to 
the minimum Kullback–Leibler divergence criterion by 
calculating the Akaike's information criterion (AIC) for 
the models and deriving the model probability in terms of 
AIC weights (Wagenmakers and Farrell, 2004).  
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Abstract

Background: The analysis of high-throughput data in biology is aided by integrative approaches such as gene-set
analysis. Gene-sets can represent well-defined biological entities (e.g. metabolites) that interact in networks
(e.g. metabolic networks), to exert their function within the cell. Data interpretation can benefit from incorporating the
underlying network, but there are currently no optimal methods that link gene-set analysis and network structures.

Results: Here we present Kiwi, a new tool that processes output data from gene-set analysis and integrates them with
a network structure such that the inherent connectivity between gene-sets, i.e. not simply the gene overlap, becomes
apparent. In two case studies, we demonstrate that standard gene-set analysis points at metabolites regulated in the
interrogated condition. Nevertheless, only the integration of the interactions between these metabolites provides an
extra layer of information that highlights how they are tightly connected in the metabolic network.

Conclusions: Kiwi is a tool that enhances interpretability of high-throughput data. It allows the users not only to
discover a list of significant entities or processes as in gene-set analysis, but also to visualize whether these entities or
processes are isolated or connected by means of their biological interaction. Kiwi is available as a Python package at
http://www.sysbio.se/kiwi and an online tool in the BioMet Toolbox at http://www.biomet-toolbox.org.

Keywords: Gene-set analysis, Transcriptomics, Network analysis, Visualization tool

Background
Gene-set analysis (GSA) is a widely used category of
bioinformatics methods and there are many available
tools that perform GSA [1,2]. In GSA, genes known to
contribute to a certain function, or share a relevant
biological feature, are collected into sets. If these gene-sets
are enriched by transcriptome or other high-throughput
data, GSA directly highlights the most prominent among
these sets, and thereby the underlying functions that are
implicated by the data [2]. Networks stand at the basis of
complex biological systems [3] and in many cases
gene-sets represent elements that are connected, not
simply because of gene overlap, but rather to exert a
coordinated function through their interactions (the
gene-set interaction network). Examples of elements that
can be used as gene-sets and where an interaction
network can be defined include: transcription factors in a
gene regulatory network [4]; the hierarchical network of

Gene Ontology terms [5]; and metabolite gene-sets in a
metabolic network [6]. In particular the last example
provides a very useful case since metabolite gene-sets
(genes that are associated to reactions in which the
metabolite takes part in) are connected through reaction
pathways, but will usually not share any common genes
(unless they participate in the same reaction). Thus, when
several metabolite gene-sets in a pathway are significant
their important biological connection will be lost, unless
the gene-set interaction network is taken into account.
With this in mind, interpretation and visualization of

the results from a GSA currently suffers from several
limitations. Typically, the results are presented as a list of
the most significant gene-sets, or visualized in a heatmap
where gene-sets are clustered according to either the
pattern of significance across several conditions or their
direction of regulation. In both cases, the biologically
relevant connections between gene-sets, defined by their
interaction network, are ignored. Multiple connected
significant gene-sets will likely represent an important
biological process, but with the current visualization
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approaches these connections are lost and are tedious to
elucidate manually.
On the other hand, it is not unusual to see GSA results

presented as networks, with nodes representing the most
significant gene-sets [1,7-9]. However, in these cases edges
between nodes simply represent gene overlap. This can
help to reduce the bias from redundant gene-sets by clus-
tering gene-sets with overlapping gene content together.
Nevertheless, a network visualization approach where the
edges represent gene-set interactions is advantageous in
the context of biological interpretation. Indeed, different
tools can be used to visualize data on gene-set interaction
networks [10-14], although some of them are not specific-
ally made for that purpose. Unfortunately, these tools
suffer from one or several of the following drawbacks:

! The tool is not made specifically to handle GSA
data, which requires the user to tweak the input
(e.g. common identifiers and color-coding scheme) in
the best way possible to fit the framework of that tool.

! The tool is only made for a specific type of network
(e.g. KEGG pathways or GO-terms), constraining
the user to only one single gene-set type.

! The tool is not effectively reducing the network to
highlight the significant results, but instead simply
overlaying the data on the original, and potentially
huge, gene-set interaction network.

Here we address the current limitations by developing a
new network-based visualization approach and implement
it in the software tool Kiwi. Contrary to other available
tools, Kiwi explicitly embraces the paradigm that gene-sets
can be biological entities that interact and it therefore aims
at visualizing GSA results in the context of the gene-set
interaction network in such way that the biological connec-
tions between all significant gene-sets become apparent.
This is done by taking into account both the directionality
and significance of the gene-sets and by removing non-
interesting gene-sets from the visualized network. Further
on, Kiwi is made as general as possible, in the sense that it
accepts input from any GSA tool and any gene-set inter-
action network defined by the user. Finally, since the
biological measurements behind the data are made at the
gene-level, Kiwi enables the user to go from the visualization
network of significant gene-sets back to the gene-level
data, in order to detect driver genes behind the regulated
biological elements that the gene-sets represent.

Implementation
Input data
The input to Kiwi is at minimum the gene-set interaction
network and a table of p-values for the gene-sets, which
can be collected from the output of any GSA tool. Apart
from this, it is recommended to also supply the gene

members of the gene-sets as well as the gene-level statistics
(e.g. p-values and fold-changes) that were used as input to
the GSA. Full details and required format for the input files
can be found in the online Kiwi reference manual.

Processing
An outline of the network visualization process performed
by Kiwi is shown in Figure 1. First, non-significant gene-
sets are filtered out according to a user-set cutoff. The
remaining gene-sets are used as nodes in a new
visualization network. In this visualization network the
edges between gene-sets should reflect how closely they
interact. The shortest path length (SPL) measures the
shortest distance between two gene-sets and is a property
of the network that indicates whether the two gene-sets
are interacting directly or indirectly via a certain number
of intermediates. Hence, the SPL between all pair of nodes
in the gene-set interaction network is calculated. If the
SPL between two gene-set nodes is below a user-set cutoff
an edge is drawn between those nodes, with an edge
thickness relative to the SPL. The SPL cutoff can be
seen as a measure of the relatedness of two gene-sets
in the gene-set interaction network, and it controls at
what distance these gene-sets should not any longer
be considered biologically connected. For each node,
only the edge or edges with the lowest SPL are kept,
so that each node is connected only to its closest nodes of
those present in the visualization network. Finally, the
visualization network is drawn using a force-based layout.
Nodes are resized to reflect the gene-set significance and
color-coded to capture the general direction of change of
the genes in the set (refer to the online documentation for
further details).

Output
Kiwi produces two figures: a network and a heatmap.
The network presents an uncluttered view where the
most important features are highlighted. The node sizes
and color-codes are adjusted according to the gene-set
significance and general direction of change. The heatmap
serves as a complement to the network by displaying the
gene-level statistics for each gene-set in the network. The
rows (gene-sets) and columns (genes) are hierarchically
clustered, which enables the identification of (i) gene-sets
with similar gene content and (ii) the significant genes
that are driving the observed changes. Both figures can be
fine-tuned by the user through several parameters and the
network can also be saved in graphML format and
imported into Cytoscape for further customization.

Case studies
To illustrate the advantages of Kiwi, we use two case
studies. The first one is based on a differential gene
expression dataset from lung adenocarcinoma vs. normal
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lung tissue [15]. Metabolites from a human genome-scale
metabolic model [16] were used as gene-sets and the
GSA was carried out using the Bioconductor R-package
piano [1].
For the second case study we used gene expression

data from a study on Kras conditional activation in
mouse xenograft tumors [17]. Metabolites from a mouse
genome-scale metabolic model, derived from the human
genome-scale metabolic model used in case study 1,
using gene homology as described in [18], were used as
gene-sets. The GSA was carried out using the Biocon-
ductor R-package piano.
Kiwi version 0.2.8 was used for both case studies. The

heatmaps and network plots shown in Figure 2a,d and
Figure 3b,c are the direct output from Kiwi, however, to
provide as clear of a figure as possible, the node labels in
the networks have been manually shifted. The data and
scripts for running these case studies are available as
Additional file 1.

Results and discussion
In order to show the advantages, in terms of biological
interpretation, of using Kiwi to visualize GSA results
in the context of a gene-set interaction network, we
performed two case studies. In both cases we used a
genome-scale metabolic model to define a metabolite-
metabolite network (connecting metabolites if they
are substrates or products of the same reaction). A
metabolite gene-set is defined by the group of genes that
are associated with reactions in which the metabolite
participates in.

Metabolic changes associated with lung adenocarcinoma
transformation
To illustrate the benefits of exploiting the gene-set
interaction network, compared to only considering the
gene overlap, we re-analysed a differential gene expression
dataset from lung adenocarcinoma vs. normal lung tissue
[15]. Metabolites from the human genome-scale metabolic

Figure 1 Overview of the Kiwi workflow. (a) Significant gene-sets are selected based on a user-set cutoff and used as nodes in the visualization
network. (b) The shortest path length (SPL) between all node pairs in the gene-set interaction network is calculated. In the example, the SPL
between node A and B is 3, and between node C and D is 4. If the SPL between two nodes is below a user-set cutoff (5 in the example), an edge
is drawn between those nodes, with a thickness corresponding to the SPL (an SPL = 1 will generate the thickest edge). In the example, the edges
between nodes A and B, and C and D, respectively, are marked in red, corresponding to the SPLs shown in the gene-set interaction network. (c)
To avoid a cluttered network with too many edges, only the best edges (with lowest SPL) are kept for each node. Note that a node may still have
multiple edges of different thickness if, for example, a thinner edge is the best one of a neighbouring node. (This step is optional.) (d) Finally, the
visualization network is drawn using a forced-based layout. Nodes are resized according to the gene-set significance and color-coded in order to
reflect the general direction of change of the gene-set.
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model HMR2 [16] were used as gene-sets (i.e. genes
associated with reactions in which a specific metabolite
participates) and the GSA was carried out using the
Bioconductor R-package piano [1], which produces files
that can be directly imported by Kiwi. The Kiwi network
(Figure 2a) clearly identifies significant gene-sets composing
two metabolically connected pathways. For example, 5-
phosphoribosylamine and 1-pyrroline-5-carboxylate both
participate in pyrimidine biosynthesis, but their relatedness
becomes apparent if the underlying metabolic network that
measures the mutual distance is considered. These import-
ant connections are lost when the results are presented as a
traditional heatmap (Figure 2b) or a network based on
overlap of gene members of the different gene-sets
(Figure 2c). The Kiwi heatmap (Figure 2d) shows the
gene-level transcriptional changes for each gene-set
enabling the identification of interacting gene-sets
without gene overlap, and their driver-genes. For example,
5-phosphoribosylamine is a significant gene-set because of
GART and PPAT up-regulation, while 1-pyrroline-5-
carboxylate is significant due to LEFTY1 and PYCR up-
regulation. The heatmap also simplifies the detection of
similar gene-sets, as e.g. nLc6Cer[c] and paragloboside[c].

Metabolic changes associated with activation of
oncogenic Kras in mouse tumor xenografts
Using a second case study we sought to test if Kiwi is
able to reproduce networks known to be informative in

a certain condition. To this end, we re-analyzed gene
expression data from a study where the oncoprotein
Kras was conditionally activated in mouse xenograft
tumors [17]. The authors showed that activation of
oncogenic Kras entails extensive metabolic reprogramming,
in particular up-regulation of steroid biosynthesis. We
therefore performed GSA [1] in the context of a mouse
genome-scale metabolic network (Figure 3a) and tested if
Kiwi could capture the relevant network of gene-sets upon
Kras activation. In line with the results in the aforemen-
tioned study, we observe the emergence of the steroid
biosynthetic pathway, which is overexpressed in different
steps (Figure 3b). Indeed, despite the fact that isopentenyl-
pPP, 14-demethyllanosterol, squalene, and lanosterol are
not overlapping gene-sets (as shown by the heatmap in
Figure 3c), Kiwi relates the metabolites given their vicinity
in the underlying mouse metabolic network. Notably,
contrary to the gene-set enrichment analysis used by the
authors, Kiwi also identifies which pathway among
the different branches of steroid biosynthesis is truly
up-regulated by Kras activation, namely lanosterol synthesis.

Conclusions
Kiwi is a new tool tailored for the visualization of GSA
results in a gene-set interaction network context. As
opposed to available tools, Kiwi starts from the premise
that gene-sets can be precise biological entities that
achieve a certain function by means of their interactions,

Figure 2 The output from Kiwi in case study 1, metabolic changes upon transformation to lung adenocarcinoma. (a) The Kiwi network
shows the significant gene-sets and their general direction of change. Up-regulation: red, down-regulation: blue. Two metabolically connected
pathways emerge, a pattern that is not easily detected in (b) a traditional heatmap or (c) a gene-overlap network. Green and orange indicate
gene-sets of the two pathways, respectively. (d) The Kiwi heatmap displays the individual gene-level statistics for each significant gene-set. It also
clusters similar gene-sets based on gene overlap in order to identify driver genes or potential bias.
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such as metabolites in a pathway. This paradigm signifi-
cantly improves the interpretation of the effect of transcrip-
tional regulation in a certain context, such as metabolism,
because it adds an extra layer of information to the GSA re-
sults. As exemplified in the two case studies, such addition
is fundamental to capture certain transcriptionally regulated
processes. In the case of the transformation to lung adeno-
carcinoma, we observe that the up-regulation of pyrimidine
biosynthesis is mediated by the connection provided by
choloyl-CoA. In the case of oncogenic Kras activation in
mouse tumors, not only do we reproduce the up-regulation
of the steroid biosynthetic process, but we also report that
this is ascribed mainly to the synthesis of lanosterol. In
neither case could such results be highlighted by connect-
ing gene-sets using gene overlap (see Figure 2c) or by over-
laying the GSA results on the corresponding gene-set
interaction network (see Figure 3a). In favour of a clean
layout for enhanced interpretation, Kiwi reduces the
gene-set interaction network while maintaining and
highlighting the important gene-set connections. It works

with the output from any GSA tool and any collection of
gene-sets that can be described as a network. For full
usability, from raw data to final figure, it integrates
seamlessly with the Bioconductor R-package piano
(for GSA) and Cytoscape (for advanced layout and
customization). Kiwi is available as a Python package at
http://www.sysbio.se/kiwi and an online tool in the BioMet
Toolbox at http://www.biomet-toolbox.org [19].

Availability and requirements
Project name: Kiwi
Project home page: www.sysbio.se/kiwi
Operating system(s): Platform independent
Programming language: Python
Other requirements: Kiwi depends on the following
python packages: numpy > = 1.8.0; matplotlib > = 1.3.1;
networkx > = 1.8.1; mygene > = 2.1.0; pandas > = 0.13.1;
scipy > = 0.13.3.
License: MIT
Any restrictions to use by non-academics: None

Figure 3 The output from Kiwi in case study 2, metabolic changes upon activation of Kras in mouse tumors. (a) The significant gene-sets
overlayed on the metabolite-metabolite network (the full gene-set interaction network). As the network is too big and the gene-sets are too
spread around the network it is not possible, in a simple way, to draw any biological conclusions about the data. (b) Kiwi effectively reduces the
gene-set interaction network and pulls out the significant gene-sets, while maintaining their biological relatedness given in the original network.
Here, Kiwi outputs a network showing the steroid biosynthetic pathway, in line with the original study. (c) The heatmap for the gene-sets in the
Kiwi network shows that isopentenyl-pPP, 14-demethyllanosterol, squalene, and lanosterol are not overlapping in terms of gene members, yet
they are connected in the Kiwi network.
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SUMMARY 

Even though aerobic glycolysis, or the Warburg effect, is arguably the most common trait of metabolic reprogramming in 
cancer, it is unobserved in certain tumor types. Systems biology advocates a global view on metabolism to dissect which 
traits are consistently reprogrammed in cancer, and hence likely to constitute an obligate step for the evolution of cancer 
cells. We refer to such traits as symmetrical. Here, we review early systems biology studies that attempted to reveal 
symmetrical traits in the metabolic reprogramming of cancer, discuss the symmetry of reprogramming of nucleotide 
metabolism, and outline the current limitations that, if unlocked, could elucidate whether symmetries in cancer metabolism 
may be claimed. 

Introduction 

The modern theory on the origin of cancer prescribes that 
every tumor is a unique experiment of nature, in which 
mutations in key genes (driver mutations) together with 
accumulation of mutations in secondary genes (passenger 
mutations) define the fitness of a cancer clone in its strive 
to survive and proliferate in the host environment, the 
human body (Gerlinger et al., 2014; Vogelstein et al., 
2013). At the time of writing, COSMIC (Catalogue Of 
Somatic Mutations In Cancer), a manually curated 
database for cancer mutations, lists 572 genes in which a 
mutation is causally implicated in some form of cancer 
(Forbes et al., 2015). Thanks to significant advances in 
the DNA-sequencing technology, in particular the advent 
of next-generation sequencing, it has been recently 
estimated that even though we have possibly discovered 
all the most recurrently mutated genes, the number of 
genes that are rarely mutated (yet potentially implicated in 
cancer) will likely continue to rise in the future (Lawrence 
et al., 2014). In addition, the heterogeneity of mutated 
genes can encompass both localized and distal tumors in 
the same patient (Gerlinger et al., 2012; Johnson et al., 
2014; Nik-Zainal et al., 2012). 

Despite this heterogeneity, some characteristics 
are clearly shared by all cancers. Phenotypic traits as 
aberrant proliferation and invasion are observed in 
virtually all cancer types (Evan and Vousden, 2001). In a 
landmark review in 2001, Hananah and Weinberg 
described six phenotypic traits that all cancers seem to 
acquire, which they called the hallmarks of cancer 
(Hanahan and Weinberg, 2000, 2011). The origin of 
cancer itself should explain the convergence on these 
phenotypic traits, in that the number of mutations that 
initiate cancer is higher than the number of pathways 
altered by the mutations, but all these mutations are 

ultimately responsible for the acquisition of the hallmarks 
(Vogelstein and Kinzler, 2004; Vogelstein et al., 2013). 
We will refer to a specific phenotypic trait as symmetric if 
convergent evolution has been observed. This term is, 
reminiscent of the fact that any two cancers as different as 
they may appear may always be repositioned to look 
symmetric under that specific phenotypic trait. In 
principle, a symmetric trait should be distinctive of the 
disease. 

Different lines of evidence recognized a 
hallmark status to the reprogramming of metabolism in 
cancer. At the genetic level, two studies published in the 
early NGS era reported an unprecedented mutation in the 
cytosolic NADP+-dependent isocitrate dehydrogenase 1 
gene (IDH1) in 12% of glioblastoma multiforme patients 
and in 8% of acute myeloid leukemia (Mardis et al., 2009; 
Parsons et al., 2008). IDH1 encodes for an enzyme 
responsible for catalysis of a reaction in central carbon 
metabolism that converts isocitrate to 2-oxoglutarate. The 
discovery of IDH1 mutations provided a direct connection 
between the origin of cancer and deregulation of 
metabolism. At the metabolic level, the first report that 
cancers may reprogram metabolic fluxes to match 
different requirements for proliferations is historically 
attributed to Otto Warburg (Warburg, 1956a). Warburg 
noted that, even in the presence of oxygen, cultured 
cancer cells prefer to metabolize glucose to lactic acid, 
rather than completely oxidize it through the tricarboxylic 
acid (TCA) cycle, which is more favorable in terms of 
ATP yield (a phenomenon dubbed aerobic glycolysis or 
the Warburg effect) (Warburg, 1956b). Accumulated 
evidence at both the genetic and metabolic level led 
researchers to conclude that cancer reprograms its 
metabolism as part of the transformation to facilitate cell 
proliferation and survival (Cairns et al., 2011; Schulze 
and Harris, 2013; Vander Heiden et al., 2009; Ward and 
Thompson, 2012). 
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Despite this, a consensus over the extent and 
prominence of metabolic reprogramming in cancer has 
not yet been established. In other words, the diversity of 
conclusions in molecular biology studies across different 
cancer models question the symmetry of metabolic 
reprogramming (Boroughs and DeBerardinis, 2015; Elia 
et al., 2015). Systems biology represents a global 
approach that aims at explaining biological behaviors of 
interest (like metabolism) by modeling the interactions of 
all components within the system. As such, it may aid in 
the establishment of consensus. In this review, we will 
summarize the arguments beyond the symmetry of 
metabolic reprogramming evidenced by molecular 
biology and attempt to reconcile them with early global 
studies of cancer metabolism in systems biology. 

The symmetry of metabolic reprogramming in 
molecular biology 
Metabolic reprogramming is defined as the rewiring of a 
metabolic flux distribution from a functional steady state 
to another functional steady state. Hence, when 
researchers talk about metabolic reprogramming in 
cancer, it must be detailed on which fluxes the rewiring 
occurs and to which new value. Recurrent phenomena 
observed in cancer that fall under this definition are: 
aerobic glycolysis (Gatenby and Gillies, 2004; Ying et al., 
2012), addiction to glutamine (Dang, 2010; Son et al., 
2013), de novo lipogenesis (Baenke et al., 2013), 
essentiality of one-carbon intermediates (Tedeschi et al., 
2013), reliance on autophagy and macropinocytosis 
(Cheong et al., 2012; Guo et al., 2013), reactive oxygen 
species homeostasis (Trachootham et al., 2009) and, more 
recently, dependence on mitochondrial respiration (Birsoy 
et al., 2014; Viale et al., 2014; Wheaton et al., 2014) 
(Figure 1A). 
Unfortunately, none of these phenotypic traits are 
universally shared among all cancer cells. Not even 
aerobic glycolysis is ubiquitous in cancer (Moreno-
Sanchez et al., 2007), despite the fact that this 
phenomenon serves as the basis for fluorodeoxyglucose-
mediated positron emission tomography (FDG-PET), 
among the most accurate diagnostic tool to detect cancer 
metastasis. For example, a subset of melanomas defined 
by overexpression of PPARGC1A (also known as 
PGC1a) displays a distinctive metabolic state 
characterized by elevated mitochondrial respiration, as 
opposed to PGC1a-negative melanomas that are highly 
glycolytic (Vazquez et al., 2013). A similar observation 
regards diffuse large B cell lymphoma, where a tumor 
subset insensitive to inhibition of B cell receptor signaling 
also featured a higher rate of mithochondrial respiration 
(Caro et al., 2012). A consensus model that 

accommodates the limits of the symmetry for these 
phenotypic traits has been constantly challenged by newer 
discoveries and remains therefore elusive (Boroughs and 
DeBerardinis, 2015). 
Nevertheless, molecular studies in the last decade clearly 
highlighted that these diverse manifestations of metabolic 
reprogramming are direct targets of oncogenes and tumor 
suppressor genes at the origin of cancer. As such, 
metabolic reprogramming represented cancer 
vulnerabilities and reversal of the metabolic phenotype 
induced by cancer mutations often resulted in tumor 
regression. For instance, mechanistic links between 
cancer mutations and metabolic reprogramming have 
been demonstrated for oncogenic c-Myc (Gao et al., 
2009), KRAS (Flier et al., 1987; Gaglio et al., 2011; Ying 
et al., 2012) and BRAF (Haq et al., 2013), loss of tumor 
suppressors SIRT6 (Sebastian et al., 2012), or oncogene-
induced activation of the PI3K-AKT-mTOR pathway 
(Duvel et al., 2010; Elstrom et al., 2004; Masui et al., 
2013), Nrf2 (DeNicola et al., 2011), and b-catenin in Wnt 
signaling (Cadoret et al., 2002). In the case of the most 
commonly mutated gene in cancer, TP53, it was noted 
that the profoundly studied and intuitive effects of its 
inactivation are yet less robust than the effects elicited by 
TP53 mutations in metabolism (Berkers et al., 2013). 
TP53 is essential to arrest cell cycle and induce apoptosis 
in the event of genotoxic stress, and loss of these 
functions is widely regarded to be the key mechanism of 
cancer initiation. Nevertheless, different TP53 mutated 
mice failed to develop tumors even if the encoded protein 
effectively lost the above-mentioned functions 
(Choudhury et al., 2007; Li et al., 2012). At the same 
time, in these experiments the protein retained a similar 
metabolic control to the wild-type protein. This suggests 
that the metabolic reprogramming induced by TP53 
mutations is not only oncogenic, but also central to tumor 
formation (Jiang et al., 2013).  
Collectively, these studies demonstrate that as much as it 
can be heterogeneous and context-dependent in its 
realization, the reprogramming of metabolism is still 
consequential to an oncogenic event. This is suggestive 
that clones with metabolic reprogramming are strongly 
selected for in the evolution of a tumor. In the same 
fashion as other hallmarks like sustained proliferative 
signaling, metabolic reprogramming provides cancer cells 
with a selective growth advantage. It is imperative to 
distinguish which traits unlock this growth advantage in 
spite of the genomic and micro-environmental 
heterogeneity; if and where metabolic reprogramming is 
symmetric. The challenge of integrating this diversity and 
provide a global view of cancer metabolism was recently 
undertaken by a number of systems biology studies. 
 



  
 
  

Figure 1 – Traits of metabolic reprogramming in cancer deemed symmetrical in molecular biology (A) and systems biology (B). Key: 1C – One-carbon; 
GSH – Glutathione; GSSG – Glutathione disulfide; THF – Tetrahydrofolate. 
 

The symmetry of metabolic reprogramming in 
systems biology 
Systems biology is a holistic approach that aims at 
explaining behaviors of interest by modeling the 
interactions of all components within a complex 
system(Cassman and World Technology Evaluation 
Center., 2007). Metabolism is a complex system. In 
humans, the metabolic network emerges from interactions 
of 3765 gene products, according to a recent genome-
scale reconstruction(Mardinoglu et al., 2014), and the 
corresponding set of genes is commonly referred to as 
metabolic genes. To tackle the challenge of symmetry in 
cancer metabolism, it would be required to find which 
traits within metabolic reprogramming are recurrent in all 
possible cancer cells. In this section, we will delineate 
some systems biology studies on this subject that have 

attempted to maintain a global view on metabolism by 
accounting for most metabolic genes in pan-cancer 
cohorts. However, due to technological limitations each 
study relied on its own approximation for the definition of 
phenotypic traits. In general, the higher the level of 
abstraction adopted for a trait, the larger was the sample 
size available for the study. In light of this, these systems 
biology studies embodied early efforts to uncover 
symmetries within metabolic reprogramming, but 
technological progress will refine the approximations 
introduced to define a phenotypic trait. 
A first level of approximation is to define a trait by the 
presence of genetic or epigenetic alterations in its 
corresponding metabolic pathway, as defined through a 
canonical classification by the Gene Ontology 
Consortium (GO)(Ashburner et al., 2000) or the Kyoto 
Encyclopedia of Genes and Genomes (KEGG)(Kanehisa 
et al., 2014). Metabolic reprogramming is thus the 
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putative effect of such alterations on cancer cells as 
opposed to genetically intact parental cells. This analysis 
is implicitly unlocked from pan-cancer studies that 
mapped genetic alterations to all known cellular processes 
and pathways, hence including metabolism. In one such 
studies, Ciriello et al. condensed these alterations across 
3,299 tumor samples from 12 tumor types into 31 
oncogenic signatures(Ciriello et al., 2013). None of these 
signatures was found to specifically enrich metabolic 
pathways or processes. Nevertheless, we note that all 
signatures collectively encompassed 5 cancer pathways 
previously mentioned to control metabolic 
reprogramming, namely signaling through the PI3K-
AKT, RAS, Wnt, p53, and c-Myc. 
A second level of approximation is to define a trait by the 
expression level of the genes belonging to its 
corresponding metabolic pathway, and metabolic 
reprogramming as a change in expression of the trait in 
the tumor compared to the matched normal tissue. In a 
first study from 2013, Hu et al. looked for symmetries in 
the gene expression profiles of 1,421 metabolic genes of 
1,646 tumor samples spanning 22 types vs. 962 matched 
normal tissues, based on data generated from a human 
microarray platform(Hu et al., 2013). The authors found 
limited metabolic reprogramming in cancer, in that the 
metabolic gene expression profile is largely similar to the 
normal tissue of origin, and cancers of different types do 
to a great extent, not share a specific type metabolic 
reprogramming. They quantified this in terms of 
Euclidean distance in the metabolic gene expression 
profile. By assuming that a normal tissue (e.g. breast) is 
100% dissimilar to another tissue (e.g. prostate), than the 
corresponding cancers (i.e. breast and prostate cancer, 
respectively) are only 63% dissimilar on average to the 
normal tissue of origin, but 83% dissimilar between each 
other. Despite this heterogeneity, they report a symmetric 
behavior in the biosynthesis of pyrimidines, where they 
observed that most genes are up-regulated, and, to a lesser 
extent, in purine and aminoacyl-tRNA biosynthesis, 
glycolysis, retinol and xenobiotics metabolism, and the 
degradation of essential amino acids and fatty acids. In a 
subsequent study in 2014, we searched analogous 
symmetries in 3,674 metabolic genes across 257 pairs of 
cancer vs. adjacent normal tissues encompassing 7 tumor 
types, based on data from a next-generation sequencing 
platform(Gatto et al., 2014). Here, we confirmed all the 
broad conclusions reached by the previous study. In our 
data set, we reported that cancer cells orchestrated the 
expression of metabolic genes in a similar fashion only 
when it comes to nucleotide, glutamate, and retinol 
metabolism. A last study by Nilsson et al. further 
corroborated these findings. Their data set consisted of 
1,981 tumors of 19 different types vs. 931 matched 
normal tissues, where they interrogated the expression of 
1,454 metabolic genes using data normalized from 
multiple human microarray platforms. Even though the 

authors did not look for symmetries by formally 
collecting these genes into pathway, they reported that 
consistently regulated genes in cancer belong to 
glycolysis, anti-oxidant metabolism, glycosylation 
pathways, nucleotide and deoxynucleotide metabolism, 
while the top regulated gene, methylenetetrahydrofolate 
dehydrogenase 2 (MTHFD2), is part of one-carbon 
metabolism. Instead of looking to deregulation of 
pathways, an alternative is to investigate deregulation of 
gene co-expression patterns. Reznik and Sander focused 
on pairs of metabolic genes that are differentially co-
regulated in 1394 tumor samples with respect to 177 
matched normal tissues in 2 tumor types(Reznik and 
Sander, 2015). Strikingly, almost no overlap was 
observed in the patterns of differential co-expression 
between the 2 tumor types. This finding was further 
documented when the authors included 1755 samples 
from 5 other tumor types and their corresponding normal 
tissues: no gene pair was simultaneously differentially co-
regulated in all tumor types. This is suggestive that 
symmetries, if any, are to be searched at the pathway level 
rather that as genetic interactions. Taken together, the 
consensus between three independent studies is that any 
tumor undertakes an obligate step during the 
transformation: the metabolism of nucleotides is up-
regulated. Considering the global scale of these systems 
biology studies, one could even argue that nucleotide 
metabolism might be the only coordinately regulated 
metabolic pathway at the transcriptional level in cancer. 
A third level of approximation defines a trait by the 
expression of sufficiently connected components with the 
metabolic network, like metabolites and reactions, rather 
than relying on canonical and arbitrary definition of 
metabolic processes. Here, metabolic reprogramming 
consists in the change of expression of small networks, 
which are recurrently over-represented in tumors 
compared to the corresponding normal tissues. In 2012, 
Ågren et al. compared the metabolic networks of 16 
cancer types vs. 24 matched normal cell types to identify 
metabolites involved in sub-networks observed more 
often in cancer at the protein level(Agren et al., 2012). 
Four groups of connected metabolites were reported: 
polyamines (e.g. spermidine), isoprenoids (e.g. 
geranylgeranyl diphosphate), eicosanoids (e.g. 5-
hydroperoxyeicosatetraenoic acid, or 5-HPETE), and 
heme catabolites (e.g. bilirubin). Later that year, Wang et 
al. compared the metabolic networks of 17 cancer types 
vs. 18 matched normal tissues and ranked pathways 
according to over-representation of reactions in cancer at 
the gene expression level(Wang et al., 2012). The most 
significant enrichments were detected for eicosanoid, 
nucleotide and one-carbon metabolism and lysosomal 
transport.  Collectively, the two studies show that cancers 
are symmetric in the formation of reaction sub-networks 
that revolve around the metabolism of eicosanoids.  
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A fourth level of approximation defines a trait by the 
abundance of related metabolites, which are informative 
of the metabolic state of that trait. Metabolic 
reprogramming consists in the change of metabolite 
abundance in tumors compared to normal tissues. A 
global view on this definition of metabolic 
reprogramming is provided by untargeted metabolomics 
(Gupta and Chawla, 2013). This technology holds the 
promise to profile the abundance of all metabolites in a 
tumor, even though at the current state the 
characterization of many metabolites remains elusive 
(Weljie and Jirik, 2011). Also, as for today, there is no 
systematic study in which untargeted metabolomics has 
been applied in a diverse group of cancer types to reveal 
differential metabolite abundance compared to matched 
normal tissues. Considering this, the picture offered by 
this technology is still too incomplete to infer symmetric 
traits of metabolic reprogramming. Nevertheless, Patel 
and Ahmed recently reviewed a progresses in individual 
cancer types spanning 12 tissues (Patel and Ahmed, 
2015). Despite differences in the metabolomics tool used 
and thereby detection sensitivity, the authors reported 
some recurrent perturbations between cancers arising 
from various tissues. They ascribed these to glycolysis 
(reprogrammed in 6 of 12 tissues), TCA cycle (6 of 12), 
choline metabolism (9 of 12) and fatty acid metabolism (9 
of 12). In terms of specific metabolites, the most 
recurrently perturbed are choline, phosphatidylcholine 
and lysophosphatidylcholine, each differentially abundant 
in five distinct cancer tissues. Reprogramming of choline 
metabolism was undetected only in tumors of the urinary 
and female reproductive system and in multiple myeloma. 
Whilst awaiting for a systematic approach to unveil 
symmetries in cancer metabolism using untargeted 
metabolomics, these studies collectively point to central 
carbon metabolism, choline and fatty acid metabolism as 
the metabolic traits mostly affected by malignant 
transformation. 
A fifth level of approximation defines a trait by the flux 
through sufficiently connected components of the 
metabolic network, and a strict application for cancer of 
the definition of metabolic reprogramming is in this way 
readily possible if the change is measured before and after 
the transformation. Necessarily, the scale of these studies 
is dramatically reduced and so the reach of any claim 
about the symmetry. Nevertheless, they provide evidences 
on non-symmetric traits. In 2012, Yuneva et al. checked 
glucose and glutamine central carbon metabolism in 
mouse cancers arising from two different tissues via two 
distinct evolutionary trajectories(Yuneva et al., 2012). 
They found no conserved pattern of metabolic 
reprogramming. In 2013, Fan et al. followed the fluxes in 
a small network of central carbon metabolism in a 
parental cell line after induction of two different 
oncogenes(Fan et al., 2013). They observed a single 
symmetric trait attributable to the transformation, that is a 

substantial increase in the fermentative flux of glucose to 
lactate (i.e. aerobic glycolysis). However, this 
phenomenon seemed to fulfill distinct metabolic 
requirements according to which oncogene was activated. 
Overall, these studies seem to rule out the symmetry in 
the reprogramming of central carbon metabolism, in that 
no trait was purely ascribable to cancer regardless of 
genetic and/or micro-environmental heterogeneity. 

The symmetries in cancer metabolism today 
The symmetries unveiled by systems biology are so far 
circumstantiated to two events: transcriptional up-
regulation of nucleotide metabolism and formation of 
sub-networks in the metabolism of eicosanoids (Figure 
1B). Given the scale of the studies in which the former 
event was observed compared to the latter, we focus the 
following discussion on the symmetry of nucleotide 
metabolism.  
In the first place, if true, why a symmetric regulation only 
in nucleotide metabolism? And within nucleotide 
metabolism, why preferentially pyrimidines? Why is it 
up-regulated? Finally, perhaps most compellingly, is this 
metabolic reprogramming an adaptive or an oncogenic 
process? In other words, considering that these studies 
compared transformed proliferating cells in an abnormal 
microenvironment to wild-type (mostly) quiescent cells in 
a physiologically normal tissue, is this metabolic 
reprogramming a feature of cancer due to adaptation to 
the transformation or is it driven by the mutations at the 
origin of cancer rendering the disease vulnerable to 
disruption in this process?  
These questions require mechanistic molecular studies 
that, as noted before, are hard to tackle at the same scale 
as the systems biology studies mentioned above. However 
some speculations are due. In proliferating cells, 
nucleotides are continuously synthesized to meet the 
increased requirements of RNA and DNA due to growth. 
Nevertheless, this argument should apply to all 
macromolecular classes (proteins, lipids, etc.) and not 
only RNA or DNA. Hence, we should have observed up-
regulation of the corresponding anabolic pathways as 
well. As a matter of fact, these other classes are more 
prominent in terms of cellular composition. In an average 
mammalian cell, DNA accounts for only 1% of dry 
weight, RNA slightly more, about 4%. For comparison, 
proteins accounts for 60%, and lipids for 18% (Alberts, 
2002). On the other, contrary to lipids and proteins, 
nucleotides are unique in that they cannot be readily 
scavenged from the extracellular environment. In 
addition, the nucleotide-based macromolecular class of 
RNA is unique compared to other classes in terms of its 
relation with growth rate. Experiments in bacteria have 
shown that when cells grow at higher rates, RNA levels 
exhibits the greatest relative change, in sharp contrast 
with DNA and proteins (Neidhardt and Curtiss, 1996). 
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This reflects the increasing concentration of ribosomes 
needed for increased protein synthesis with increasing 
growth rate. Whereas there is convincing evidence that 
DNA concentration is not limiting, the ribosome 
concentration and the corresponding protein synthesis rate 
are. Thus, in 1983, Ehrenberg and Kurland proposed that 
an energy-efficient metabolic strategy for ribosomes at 
increasing growth rates is to proportionally increase both 
the substrate pool and the ribosome concentration 
(Ehrenberg and Kurland, 1984). Since the most prominent 
phenotypic trait of a cancer cell is the growth advantage 
over the neighboring normal cells, this growth rate 
dependent effects on the cell macromolecular composition 
should be observed during the transformation. In this 
fashion, the here-in reported convergence on nucleotide 
metabolism up-regulation seems to support the model of 
Ehrenberg and Kurland. In other words, this symmetry is 
probably not an oncogenic process, but an evolutionary 
conserved metabolic strategy that cells adopt when their 
growth rate increases. We acknowledge two alternative 
hypotheses that argue in favor of the oncogenic nature of 
nucleotide metabolism up-regulation. The first one is the 
process of DNA damage. More than (virtually) any other 
normal cell, cancer cells suffer significant DNA damage, 
which leads to unregulated cell division, and the 
reincorporation of nucleosides during DNA reparation 
requires a sanitized pool of these metabolites. Chemical 
interference with this process leads to tumor regression in 
mouse models (Gad et al., 2014). In this case, up-
regulation of nucleotide metabolism may serve as a 
cancer-specific reprogramming and explain the observed 
symmetry. The second one stems from the observation 
that de novo pyrimidine biosynthesis is a process 
stimulated by mTOR signaling (Ben-Sahra et al., 2013; 
Robitaille et al., 2013). This is turn is constitutively 
activated as a result of oncogenic aberrations in upstream 
pathways, including three of the five above mentioned 
cancer pathways recurrently associated with the 
oncogenic signatures, PI3K-AKT, RAS, ans Wnt 
signaling (Shimobayashi and Hall, 2014). The fact that 
mTOR is also central to ribosome biogenesis (Gentilella 
et al., 2015) interlaces its oncogenic control of pyrimidine 
biosynthesis with the above discussed crucial need for 
RNA precursors to support a higher growth rate. A simple 
view of the symmetry in cancer metabolism would be an 
adaptive process in which proliferation is unlocked by 
oncogenic activation of mTOR that up-regulate nucleotide 
biosynthesis, whose products are in turn limiting for 
proliferation. However, as much as mTOR can be 
presumptively assumed active in the transformation of 
many disparate cancer types (Kandoth et al., 2013), this 
symmetry should also be validated. 
The fact that up-regulation of nucleotide metabolism is 
symmetrical in cancer opens a therapeutic window, 
which, in fact, represents one of the most long standing 
and effectively exploited chemotherapeutic strategies. 

Indeed, among the oldest available treatments for cancers 
of various type is a chemotherapy consisting of 
antimetabolites (Tennant et al., 2010). These agents are 
analogs to human metabolites and they function by 
interfering with those reactions that use these metabolites 
as substrate. Gemcitabine, decitabine, and fluorouracil are 
examples of these drugs. They are all antimetabolites to 
nucleotides, and specifically pyrimidines. Their clinical 
use against a number of disparate cancers underscores the 
symmetry of nucleotide metabolism in cancer. However, 
it does not necessarily corroborate the above claim about 
its uniqueness in the landscape of metabolic pathways. 
Indeed, another prominent class of antimetabolite drugs is 
represented by anti-folates (e.g. methotrexate). This, in 
turn, can be reconciled to the finding reported by Nilsson 
and colleagues about MTHFD2 and the related 
mitochondrial folate pathway. Taken together, the direct 
observations in human tumors of the efficacy of inhibition 
of such (and perhaps only such) metabolic pathways seem 
to support their symmetry in cancer metabolism. At the 
same time, the fact that cancer can relapse after 
antimetabolite treatment is also indicative that such 
symmetric regulation is yet circumventable, hence 
suggesting that the process is rather adaptive then 
oncogenic. 
In our study (Gatto et al., 2014), we also noted that the 
symmetry is broken by the case of clear cell renal cell 
carcinoma (ccRCC), the most common form of kidney 
tumor (Rini et al., 2009). Here we reported, for example, 
that nucleotide metabolism is down-regulated at the 
transcript and protein level. We ascribed the uniqueness 
of ccRCC metabolic reprogramming to recurrent copy 
number alterations in the chromosome 3p. Here is also 
located the most commonly mutated tumor suppressor 
gene in ccRCC, the von Hippel-Lindau (VHL) tumor 
suppressor (Creighton et al., 2013). This proposed model 
of metabolic reprogramming, which remains to be 
validated, prescribes that exceptional genetic events 
following loss of VHL lead to the symmetry break while 
still promoting tumor progression. 

Perspectives 
A central question in the search for symmetries in systems 
biology was introduced above and regards the oncogenic 
nature of a symmetrical process. In contrast to molecular 
biology where mechanisms induced by an oncogenic 
mutation can be studied in great detail, such approaches 
have not yet been tackled by systems biology. 
In addition, we identified five weaknesses that hamper 
any definitive claim about symmetries even for the 
outlined large-scale studies:  
1. First and foremost, the phenotype of a tumor is only 

approximated by its gene expression profile. The 
central dogma commends that the proteins are the 
ultimate effectors for the phenotype of a cell. 
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Although recent estimates recognize to the process of 
transcription a prominent role in the control of protein 
levels (accounting for ~70% of the variance (Li and 
Biggin, 2015)), translation and degradation cannot be 
neglected. Even under this approximation, proteins 
exert their function and define a cell phenotype by 
means of interactions within each other and with the 
environment (Barabasi and Oltvai, 2004; Vidal et al., 
2011). These interactions depend on the availability of 
certain compounds at a given time, potential 
modifications of protein active sites (or even distant 
sites) via post-translational modifications, and 
probably on processes that we do not fully understand 
or not know at all. Indeed, researchers rely and 
attempt to corroborate the paradigm introduced with 
the central dogma. This imposes tremendous 
limitations on our ability to describe and interpret a 
phenotype. Most of these results will undoubtedly 
collapse or necessitate to be revisited in light of a 
future paradigm shift.   

2. The sample size of these studies is still limited, with 
only thousands of cancers across tens of cancer types. 
It is worth reminding that some 15 million new cases 
of cancer are diagnosed every year, classified in over 
100 types.  

3. Genetic and epigenetic alterations may not be the only 
drivers of cancer evolution. For example, in a recent 
publication, Martincorena et al. found that skin cells 
displayed a surprisingly high number of mutations in 
cancer driver genes, despite being physiologically 
normal. As many as 83 clones per square centimeter 
of skin positively selected for mutations in NOTCH 
genes, a family causally implicated in cancer due to 
their role in the regulation of stem cell biology. Even 
though these are aged and UV-exposed cells and even 
considering that the mutation burden is still at the 
lower end for most skin cancers, the fact that normal 
cells carry so many cancer-causing mutations is 
sufficient to question “what combinations of events 
are sufficient for transformation” (Martincorena et al., 
2015). 

4. The technology is limiting. This is a fact that will 
always impinge the spectrum of scientific questions 
that can be legitimately answered. In this case, the 
advancement in our understanding on which and to 
which extent a gene is expressed is outstanding 
compared to twenty years ago or so. Yet, these studies 
relied on pictures of the transcriptome that are static, 
estimated, and related to a variegated population of 
human cells.  

5. In close relation with the previous point, these 
questions should be addressed experimentally. These 

experiments are in turn dependent on the presence of a 
scalable and practical technology. Only repeated 
experimental observation may corroborate the 
boundaries of the symmetry so far claimed for the 
metabolism of cancer.  

Conclusion 
We believe that the search for symmetries is essential to 
understand the role of metabolism in cancer evolution. 
These symmetries represent basic requirements for the 
existence of cancer. So far, systems biology studies have 
elucidated some instances where such symmetry can be 
claimed or should be ruled out. Even though the findings 
unlocked by systems biology, like the centrality of 
nucleotide metabolism, are intuitive for many cancer 
researchers, the global approach of systems biology helps 
to set the borders and circumstantiate what really matters. 
If anything, it draws our attention away from processes 
that are just a corollary to the origin of cancer and 
promotes our curiosity towards new hypotheses. 
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