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FREDRIK H. KARLSSON 

Department of Chemical and Biological Engineering 
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Abstract 
The human body is hosting a tremendous number of microbial cells and many of these 
reside in our gut. The gut microbes perform breakdown of indigestible dietary 
components and contribute to energy harvesting from food. Furthermore, there is a 
constant interaction between our microbes and our immune system to fend of pathogens 
and tolerate commensals. Evidence suggests that the composition of the gut microbiota 
is altered in obesity and could contribute to development of obesity related metabolic 
diseases. This thesis presents results that show an association between the gut 
microbiome, the collective genomes of the microbiota, and symptomatic atherosclerosis. 
The gut microbiome was also found to be associated with diabetes and a classifying 
model for diabetic status was developed. A novel method for grouping genes into 
metagenomic clusters that are likely derived from the same genome is also presented. 
Bariatric surgery is an effective method for treating obesity and reduces the risk of its 
co-morbidities. It was also found that the gut metagenome is altered considerably after 
bariatric surgery.  

Two software tools for metagenomic data analysis and hypothesis testing are presented. 
MEDUSA is software for quality control and annotation of metagenomic sequence reads. 
MEDUSA was used for the analysis of 782 gut metagenomes and a global human gut 
microbial gene catalogue was constructed and evaluated. FANTOM is software with a 
graphical user interphase that provides hypothesis testing in a taxonomical and 
functional context. To model key metabolic functions of gut microbes, genome-scale 
metabolic models of three species from the human gut are presented and their 
interactions are evaluated.  

This work contributes to the knowledge of associations between the gut microbiota and 
metabolic diseases. A number of novel methods for data analysis of gut metagenome data 
are presented.  

 

 

Keywords: gut metagenome; atherosclerosis; diabetes, bariatric surgery; gene catalogue; 
FANTOM; MEDUSA; genome-scale metabolic model; metabolism 
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1. Introduction  
The world is facing an epidemic increase in obesity with a near doubling in prevalence 
since 1980. More than 1.4 billion people were overweight and of these 500 million were 
obese in the year 2008 (WHO, 2013a). The obesity epidemic, which started in the United 
States and Western Europe, is now widespread across the world to all continents. 
Obesity is a major risk factor for metabolic diseases such as cardiovascular disease and 
diabetes. Cardiovascular disease with its manifestation coronary heart disease and 
stroke is the leading cause of death worldwide with an estimated 17 million deaths or 
30% of all deaths in 2008 (WHO, 2013b).  Half of individuals with diabetes die of 
cardiovascular disease and overall the mortality rate is double in diabetic individuals 
compared to healthy.  

On a theoretical level, obesity can be avoided by decreasing energy intake and increasing 
energy expenditure by exercise, in reality this is a much more complicated issue. Efforts 
to reduce weight by a person are compensated by biologic responses; morbid obesity is 
most often not a personal choice but a disease (Friedman, 2004).  A range of known and 
unknown environmental factors, genetic factors, what diet is preferred, how much 
energy is extracted from diet, energy expenditure in resting and active state play a role 
in determining the body weight and levels of lipids and glucose in the blood. The 
microorganisms that live in and on us are an environmental factor that might have a 
role in the pathogenesis of obesity and its comorbidities cardiovascular disease and 
diabetes. Recent studies have shown that the gut microbiota and its collective genome, 
the microbiome, is altered in obesity (Duncan et al., 2008; Furet et al., 2010; Le 
Chatelier et al., 2013; Ley et al., 2005; Turnbaugh et al., 2009). Furthermore, the gut 
microbiota is not only associated with obesity but is can also transfer the obese 
phenotype by gut microbiota transplantation in mice (Turnbaugh et al., 2008; 
Turnbaugh et al., 2006; Vijay-Kumar et al., 2010) and increase insulin sensitivity in 
humans (Vrieze et al., 2012).   

Given the serious burden obesity and its comorbidities cardiovascular disease and 
diabetes puts on society, there is a pressing need to find new ways of tackling this 
problem. Investigating the role of the gut microbiota in metabolic diseases is one 
important way to address this challenge. The gut microbes can be studied by shotgun 
sequencing of their collective genomes, the microbiome, at a detailed level to characterize 
the taxonomic and functional profile of this complex ecosystem. Analysis of metagenomic 
data and how it can be leveraged has important scientific challenges. With this 
background, this thesis aims to address these three questions: 

How is the human gut metagenome associated with metabolic diseases?  

It is known that alterations in the gut microbiota are associated with obesity but early 
reports have to some extent been inconsistent in the specific correlations. The role of the 
gut microbiota in obesity related metabolic diseases, cardiovascular disease and 
diabetes, have been studied using 16S rRNA sequencing and quantitative PCR, 
respectively (Koren et al., 2011; Larsen et al., 2010). However, 16S rRNA sequencing can 
reveal differences in the taxonomic makeup of the microbiota but to discern the 
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functional capacity of the genomes of the microorganisms in the gut, metagenomic 
sequencing is required. Bariatric surgery is an effective method for weight loss and often 
quickly cures diabetes. It is therefore interesting to investigate if there are long term 
changes in the composition of the gut microbiota after bariatric surgery that possibly 
contribute to weight-loss and improved metabolic status. In this work we investigate if 
and how the gut microbiome is associated with symptomatic atherosclerosis, diabetes 
and bariatric surgery by sequencing of the gut metagenome.  

Can bioinformatics tools for analyzing metagenomic data be advanced and made more 
easily accessible? 

To analyze gut metagenomic data mentioned above and define its functional and 
taxonomic composition, a bioinformatics pipeline is needed. There was no tool available 
that was suitable for the type and amount of data that was generated in this project. 
Due to the large amount of data, mapping and annotation of the metagenomic sequence 
reads need to be done on a computational cluster with more processing power than a 
personal computer. An analysis pipeline requires the use of several different programs 
with custom scripts for formatting the output of one program to suit the input of another. 
Some later part of the analysis, when all sequence data has been annotated is possible to 
do on a personal computer. However, statistical analyses are often done in scripting 
languages and the access to biological database is not incorporated into the statistical 
software.   

This thesis describes a package, MEDUSA, that can be used on a computational cluster 
to annotate metagenomic sequence reads and provide a quantitative assessment of 
taxonomic and gene functional features. FANTOM was further developed to take the 
output from MEDUSA and perform statistical analysis. FANTOM provides analysis tools 
for drawing biological conclusions from metagenomic data in a graphical user 
interphase. FANTOM contains access to KEGG and NCBI taxonomy databases.  

Can metabolic modeling be used for studying basic metabolism in the human gut? 

Metgenomics provides a parts list of the gut microbiome, a list of potential functions that 
can be performed by the microbiota. We hyptothesise that metabolic modeling can be 
used to leverage metagenomic data to draw more detailed conclusions about how the 
different members of the microbiota interact at the metabolic level. Genome-scale 
metabolic models (GEMs) contain a mapping of genes, proteins and reactions and could 
be used for investigating metabolic interactions. Due to the complexity of reconstructing 
and accurately modeling metabolic fluxes, this needs to initially be done in a simplified 
system.  

This thesis describes the concept of metabolic modeling of the gut microbiota and 
provides an example of such use. This system can be used for testing hypotheses about 
metabolism in the gut.  
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2. Background  
The term microbiota is here used to describe a community of microorganisms. The term 
microbiome was originally coined by Joshua Lederberg as "the ecological community of 
commensal, symbiotic, and pathogenic microorganisms that literally share our body 
space”. Lederberg has also been quoted as defining the “microbiome to describe the 
collective genome of our indigenous microbes (microflora)” (Hooper and Gordon, 2001), 
and the microbiome is used in this thesis to describe the collective genome of the 
microbiota and is equivalent to the gut metagenome. 

2.1. The human gut microbiota 
The microorganisms that live on and inside humans are collectively called the human 
microbiota. An adult human is composed of about 1013 somatic cells whereas the number 
of microorganisms that live on and in a human is 1014 and thus outnumber human 
somatic cells by a factor of 10. The microorganisms are mainly prokaryotic and some 
eukaryotic cells that collectively make up the human microbiota (Savage, 1977). Apart 
from the intestinal microbiota, also the skin, oral, nasal and vaginal microbiota have 
been studied extensively, especially in the Human Microbiome Project (Huttenhower et 
al., 2012b). The human microbiota is not restricted to these sites but do also reside in for 
example the lungs, the blood and atherosclerotic plaques (Amar et al., 2013; Goddard et 
al., 2012; Koren et al., 2011). The main mass of microorganisms associated with humans 
resides in our intestinal tract. The weight of the bacteria living in a human intestine is 
about 1.5 kg and make up about 50% of the fecal matter (Zhao, 2013). This thesis focuses 
on the gut microbiota and microbiota residing at other anatomical sites are not described 
in detail. The oral and gastrointestinal microbiota are distinctly different in composition 
although they are connected via the esophagus and food and microbial cells pass from 
the oral to the gastrointestinal tract (Huttenhower et al., 2012b).   

It is important to note that the main part of the organisms making up the human 
microbiota is seen as non-pathogenic but rather co-exist in a symbiotic or commensal 
relationship with the human host.  

The density of cells increases along the length of the intestine to reach 1011-1012 cells per 
gram of luminal content in the distal colon (Backhed et al., 2005). The gut microbiota is 
mainly composed of bacteria from two major phyla, Bacteroidetes and Firmicutes, with 
less abundant phyla such as Actinobacteria, Proteobacteria and Verrucomicrobia (Ley et 
al., 2005). Methanogenic archaea from the phyla Euryachaeota are also present, mainly 
the species Methanobrevibacter smithii (Eckburg et al., 2005; Qin et al., 2010). The 
density and composition of the human gut microbiota is described in Figure 1. The total 
number of species is variable among humans but a study of 124 individuals estimates 
over 1000 species in the cohort and each individual carried at least 160 species. The 
study also found a core of species that were share among all (18 species) or a majority (75 
species) of individuals. The abundance of the species in the core is highly variable, up to 
three orders of magnitude (Qin et al., 2010).  
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Figure 1 Density and composition of the human gut microbiota. a) Numbers for each 
section of the gastrointestinal tract represents the number of microorganisms per gram 
of intestinal content, adapted from (Leser and Molbak, 2009).  b) Composition of genera 
(main) and phyla (inset) in human feces. Data taken from (Karlsson et al., 2012).  

Humans are born essentially sterile and acquire microbes during birth in the birth canal 
and in contact with skin and environmental microbes. The mode of delivery and whether 
the baby is breast or formula fed are important factors that determines the early 
colonization (Wall et al., 2009). After birth, an infant is colonized by facultative 
anaerobes, for example Escherichia coli and Streptococcus species, when oxygen levels in 
the gut decreases, obligate anaerobic species can colonize. A study of infants from three 
geographical areas, United States, rural Malawi and Venezuela showed how bacterial 
diversity increases with age and stabilizes after about 3 years of life. Children and their 
parents have more similar microbiota than children to unrelated individuals and 
likewise are members of the same household more similar microbially than two 
individuals from different households (Yatsunenko et al., 2012). This indicates that 
common environmental exposures are important for shaping the microbiota.  

The information about the composition of the gut microbiota is most commonly learnt 
from fecal samples that can be collected in a non-invasive manner. Commonly when we 
refer to the gut microbiota, we mean the composition of microorganisms in a fecal 
sample. Our knowledge about the composition of microorganisms from other parts of the 
gastrointestinal is limited as sampling of these sections is invasive and difficult to 
obtain. However, fecal samples reflect well the large and dense composition in the colon 
where most of the metabolic activity and fermentation occurs. Analysis of samples from 
ileostomists (individuals who had their colon removed) showed that Streptococcus, 
Escherichia and Clostridium species were most abundant in the small intestine. A larger 
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diversity was seen in colon samples compared to small intestinal samples (Zoetendal et 
al., 2012).  

The stability of the gut microbiota over time has not been studied so extensively as 
variation between individuals. It has been shown in several studies that an individual’s 
microbiota is more similar between two time points than to the microbiota of another 
individual (Huttenhower et al., 2012b; Rajilic-Stojanovic et al., 2012; Turnbaugh et al., 
2009).  An extensive study investigating the stability of the gut microbiota of 37 
individuals over 5 years found that the gut microbiota was remarkably stable over time 
and 70% of the strains were remaining after 1 year with few changes occurring the 
following 4 years (Faith et al., 2013). Strains that were more abundant were also more 
stable over time. The stability was further manifested in a metagenomic study looking at 
single nucleotide polymorphisms (SNPs) in the microbiome and found that individual 
specific strains persist over time (Schloissnig et al., 2013). This indicates that a sample 
at one time point is representing the composition of the microbiota over time which is 
important for diagnostic purposes.  

 

2.2. Traditional methods to study the gut microbiota 
Culturing of microbes has been used to characterize and quantify microbial taxa of 
human stool samples. Quantitative culturing is done by spreading serial dilutions of a 
sample onto selective plates and counting the colonies formed. The taxonomic resolution 
varies but is typically at genera or above and culturing is only applicable to the live part 
of the microbiota. Culturing has successfully been used to study the infant gut 
microbiota where initially a large fraction of the microbes are facultative anaerobes and 
can be readily cultured (Adlerberth et al., 2007).  

Molecular methods have been developed due to the difficulty to culture some 
microorganisms in the human gut, especially strictly anaerobic species, and to increase 
the taxonomic resolution. For bacteria and Archaea, which make up the major part of 
the microorganisms inhabiting the human gut, the 16S rRNA gene has been the main 
target for analysis since the mid-1980s (Woese, 1987). The 16S ribosomal gene is about 
1500 base pairs long and ubiquitous in bacteria and Archaea (Morgan and Huttenhower, 
2012). An important feature of the 16S rRNA gene is that it contains conserved regions 
as well as variable regions in different species which makes it possible for constructing 
universal primers as well as specific taxonomic identification. The conserved regions 
make it possible to selectively amplify and characterize only the 16S rRNA genes in a 
microbial sample using PCR.  

Methods that aim to do fingerprint analyses of the 16S rRNA gene content of a microbial 
sample include temperature gradient gel electrophoresis, denaturing gradient gel 
electrophoresis and terminal restriction fragment length polymorphism. Gradient gel 
electrophoresis methods work by separating DNA fragments based on their size and 
sequence since the latter determines the denaturing condition and single stranded DNA 
migrates slower than double stranded DNA. Gradient gel electrophoresis methods have 
a low taxonomic resolution and are most suitable for cheap and quick comparisons for 
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preliminary purposes. The terminal restriction fragment length polymorphism method 
involves a PCR amplification of 16S rRNA genes and labeling the terminal fragment. A 
subsequent restriction with one or more endonucleases cleaves fragments based on 
sequence which can be separated on a gel. A disadvantage is that also this method does 
not give direct taxonomic identities to observed fragments. However, fragment lengths 
can be compared to in silico cut fragments from databases of known 16S rRNA sequences 
(Sjoberg et al., 2013).  

Microarrays with probes complementary to 16S rRNA sequences can be used as a high 
throughput tool to characterize microbial communities. The human intestinal tract chip 
(HITChip) is designed with 1140 probes targeting the variable region of the 16S rRNA 
gene. The HITChip provides relative abundance information of probes but is of course 
limited to the sequences present on the microarray (Rajilic-Stojanovic et al., 2009).  

2.2.1. 16s rRNA gene sequencing 
Direct sequencing of the 16S rRNA gene is increasingly used as the cost of sequencing is 
dropping and bioinformatics tools and databases used for analysis are readily available. 
Initial studies used Sanger sequencing of cloned 16S rRNA genes into E. coli and could 
produce near full length sequences (Eckburg et al., 2005; Ley et al., 2005). Direct 
sequencing of amplified sequences could be performed with the introduction of the 454 
sequencing technology (Andersson et al., 2008; Sogin et al., 2006). This technology has 
the disadvantage that it can only produce sequence lengths of 100-450 bp but a selection 
of the hyper variable regions of the 16S rRNA gene can be targeted which proved 
sufficient for taxonomic identification at a genus or species level. Typically, the hyper-
variable regions of the 16S rRNA genes used are the V1, V2, V4 and V6 regions. In the 
analysis of 16S rRNA genes, near identical sequences are grouped or binned into 
operational taxonomic units, OTUs, with a similarity of 95%, 97% or 99% because errors 
can be introduced by sequencing and to group nearly identical species or strains into a 
common group. OTUs are almost equivalent to the term species but might not be named 
or characterized previously (Morgan and Huttenhower, 2012). There are large 
repositories with known sequences for species that have been cultured and isolated from 
the environment such as GreenGenes (DeSantis et al., 2006), SILVA (Pruesse et al., 
2007) and Ribosomal Database Project (Cole et al., 2013) which facilitates easy 
comparison.  

The analysis of 16S rRNA gene sequences can be performed with software packages such 
as the highly used Quantitative Insights Into Microbial Ecology (QIIME) (Caporaso et 
al., 2010) and mothur (Schloss et al., 2009) that can run on a laptop or computer cluster 
and can analyze millions of 16S rRNA gene sequences from microbial communities. 
These tools are command line scripts that take raw sequences as input and could bin 
them into OTUs, display phylogenetic trees, calculate diversity and compare the 
microbial content between groups of samples. Analyses could be performed using 
annotations of sequences to reference databases as mentioned above or de novo for 
sequences that are not presently in the databases.  

16S rRNA sequencing is today widely used as a tool for exploring the content of a 
microbial sample due to its relative low cost and well developed software analysis tools. 
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This technology is capable of answering which microorganisms are present and their 
abundance.  

2.3. Metagenomics of the gut microbiota 
Shotgun metagenome sequencing of a microbial community’s genomic content, the 
microbiome, can not only describe the taxonomic content but also its functional potential 
in term of individual gene functions. This is important because reference genomes are 
lacking for many species in the environment and the human gut. Furthermore, species 
with similar 16S rRNA gene sequences can have different functional potential e.g. in 
toxicity and pathogenicity thus making inferences of the functional content of a 
microbiome from taxonomic markers difficult or incorrect.  

2.3.1. DNA extraction and sequencing 
A metagenome project starts with sample collection and quick freezing to -80°C as a 
measure to quench any changes to sample from its original state or introduction of 
foreign material. Next, DNA is extracted from the sample and the method used is 
important to recover genetic material from a broad class of cells in the samples and with 
consistent recovery rates. Mechanical cell lysis by repeated bead beating together with 
chemical lysis has been shown to yield DNA from a broad range of species from human 
fecal samples. Overall, 4 different DNA extraction methods using mechanical and 
enzymatic lysis showed more similar microbial abundance profiles compared to inter-
subject variation (Salonen et al., 2010).  

Sequencing technology has developed tremendously since the early metagenome projects 
of the human gut. Prices per base have dropped while the number of bases that could be 
sequenced per machine has increased several orders of magnitude. Initial studies used 
Sanger sequencing technology which involves laborious plasmid libraries in E. coli cells 
and subsequent purification and sequencing of individual transformants (Gill et al., 
2006; Kurokawa et al., 2007). The number of sequenced bases from studies using Sanger 
sequencing is in the order of a hundred mega base pairs and around a hundred thousand 
reads per sample (Arumugam et al., 2011; Gill et al., 2006; Kurokawa et al., 2007). With 
the introduction of the 454 pyrosequencing technology, the isolated DNA could be 
sequenced without the cloning step into E. coli. A study of lean and obese twins 
presented a total of 2.1 Gbp of sequences or about half a million reads per sample from 
the microbiome of 18 individuals using the 454 pyrosequencing technology (Turnbaugh 
et al., 2009). With the introduction of the Illumina/Solexa technology, the number of 
reads per sample could be significantly increased. In a study of 124 individuals, Illumina 
sequencing was used to produce 576.7 Gbp with an average 4.5 Gbp or 62 million reads 
per sample (Qin et al., 2010). It was shown that even with short read lengths produced 
by the Illumina technology, 44 and 75 bp at the time, it was possible to assemble 
sequences into longer contigs which covered previously sequenced human gut 
metagenomes sequenced with longer reads. The SOLiD technology was recently used to 
produce 35 bp single reads that could characterize the gene abundance similarly to 
profiles produced with Illumina sequences (Cotillard et al., 2013). SOLiD reads are 
produced in color space, not sequence space, meaning that converted to sequence space, 
they are correct until the first erroneously called color. The use of color space reads 
means that de novo assembly is problematic and studies using SOLiD reads have relied 
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on using established reference catalogues. A comparison between the 454 
pyrosequencing and Illumina technologes showed that derived assemblies overlapped by 
90% of the abundance estimated correlated with an R2 of above 0.9 (Luo et al., 2012).  

2.4. Characteristics of the gut metagenome 
The first metagenomic study of the human gut microbiome was performed in 2006 on 
two American individuals by sequencing a total of 78 Mbp. The gene functional content 
of the metagenome contained enrichment of genes for glycan degradation, amino acid 
metabolism, xenobiotic metabolism and methanogenesis compared to the human genome 
(Gill et al., 2006). The gut metagenomes from 13 individuals, including unweaned 
infants, were compared to other metagenomomes from the environment. Infants had a 
simpler composition and higher inter-individual variation of the metagenome compared 
to adults (Kurokawa et al., 2007). A shared core was identified at the gene functional 
levels rather than at the taxonomic level by sequencing of 18 American obese and lean 
individuals. Core functions were carbohydrate, glycan and amino acid metabolism 
whereas cell motility, signaling and membrane transport were identified as variable 
between the 18 gut metagenomes (Turnbaugh et al., 2009). By deep sequencing of the 
fecal metagenome from 124 Spanish and Danish individuals, a gene catalogue of 3.3 
million genes was assembled. Almost 300,000 genes were found in at least a majority of 
the individuals and these were identified as a core of common genes. Out of the genes 
that could be taxonomically annotated almost all belonged to Bacteria and Archaea (Qin 
et al., 2010). A large American project, The Human Microbiome Project, sequenced the 
microbiome at different anatomical sites and repeatedly sampled some individuals. The 
variation between subjects was consistently lower compared to the variation between 
samples from the same individual taken at different time points both at the taxonomic 
and functional level (Huttenhower et al., 2012a). The studies described above have been 
important for describing the diversity and function of the gut microbiome. Several 
bioinformatics methods for analysis were described that are important for the field and 
in a few cases these were also distributed as public software. 

 

2.5. Bioinformatics tools for metagenomic data analysis 
The bioinformatics tools used for analysis have evolved together with the field and also 
with the advancement of sequencing technology. Larger datasets and varying read 
lengths put different requirements on the analysis software e.g. with the output of a 
Sanger sequencing run, it was possible to BLAST all reads against a database such as 
NCBI nr while the same procedure is impractical with hundreds of millions of short 
reads delivered by one run on an Illumina sequencing machine. This illustrates the 
faster development in sequencing technology compared with computational power that 
has been observed recently.  

2.5.1. Taxonomic characterization of metagenomic reads 
Obtaining a taxonomic profile of a whole metagenome is commonly one main objective in 
a bioinformatics analysis of a metagenomic dataset. This is done by classifying each read 
and thereafter calculateing the relative abundance of a taxonomic unit. Available tools 
rely on sequenced genomes of microbial species and the available genomes were 
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traditionally biased towards model organism and pathogenic species. Efforts to fill gaps 
in the taxonomic tree by the Human Microbiome Project have provided whole genome 
sequences for 178 strains associated with the human body (Nelson et al., 2010) and the 
project have delivered more strains after the publication. Taxonomic classification 
binning methods work by training a classifier algorithm on known reference genomes 
that is used for characterization of metagenomic reads. PhylophytiaS is a tool that uses 
the k-mer frequencies in a sequence as input to a support vector machine for taxonomic 
classification (Patil et al., 2011). In a similar approach, Phymm uses interpolated 
Markov models trained on reference genomes to classify short metagenomic reads 
taxonomically (Brady and Salzberg, 2009). These and other binning methods do not rely 
on alignment and perform reasonably well when there are no sequenced representatives 
in the reference database but alignment methods work well when there is at least a 
genome from the same genus known.  

Alignment based approaches are common in classifying metagenomic reads and have 
successfully been used in large scale projects of the human gut microbiota (Huttenhower 
et al., 2012b; Qin et al., 2010). Parsing a BLAST search of metagenomic reads to a 
database such as NCBI nr can be performed by the software MEGAN and the reads are 
then annotated to NCBI taxonomies to the lowest common ancestor (Huson et al., 2007). 
Although a BLAST search to NCBI nr is a sensitive method to find the origin of a 
metagenomic read, it does have a considerable computational cost. A BLAST search 
against sequenced microbial genomes can have an output in the order of 10 reads per 
second on a single CPU and a search against larger databases slows down with 
increasing size of the database. Speeding up the alignment is therefore essential and 
could be done by either reducing the size of the database or using accelerated alignment 
algorithms. By identifying clade specific marker genes and including only those in a 
reference database, the tool Metaphlan provides a speedup compared to alignment to a 
full database of microbial genomes (Segata et al., 2012). Accelerated alignment tools 
such as Bowtie2 (Langmead and Salzberg, 2012)and SOAP2 (Li et al., 2009) can perform 
alignments several orders of magnitude faster than BLAST but with a loss of sensitivity.  

Fast methods for the analysis of metagenomes are important and continued development 
is crucial to keep up with the decreasing costs and increased output from sequencing 
machines.  As an example, to search 500 000 MetaHIT reads against the NCBI nr 
database with BLASTX had a cost of $151 (Angiuoli et al., 2011). Considering that the 
average sequencing depth of this study was 62 million reads, the cost per sample of 
performing the above alignment would be over $18 000, many times more than the cost 
of sequencing.  

2.5.2. De novo assembly of metagenomic reads 
By sequencing a metagenome at sufficient depth compared to its complexity, it is 
possible to assemble reads into longer contigs. Assemblies of metagenomic data is 
typically fragmented and complete genomes cannot be expected although near complete 
genomes have been reconstructed from the cow rumen (Hess et al., 2011).  

Software for single genome assembly has successfully been used in assembly of 
metagenomic data. SOAPdenovo (Li et al., 2010) and velvet (Zerbino and Birney, 2008) 
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have been used for assembly of metagenomic data from the human gut (Huttenhower et 
al., 2012a; Qin et al., 2010) and the cow rumen (Hess et al., 2011). Modifications to single 
genome assemblers have been made to better handle the varying abundance of species in 
a metagenome, two example being MetaVelvet (Namiki et al., 2012) and Meta-IDBA 
(Peng et al., 2011). MOCAT is a metagenomic assembly pipeline that can preprocess, 
assemble by calling SOAPdenovo and revise assembly (Kultima et al., 2012). MetAMOS 
is an assembly pipeline that has support for 8 different assemblers and facilitates easy 
comparison on the performance of each of them (Treangen et al., 2013).   

2.5.3. Functional annotation and metabolic reconstruction 
Metagenomic sequencing, as opposed to most other profiling methods of a microbial 
community including 16s rRNA sequencing, can be used to study the genetic functional 
potential and not only the taxonomic profiles. Two main approaches for functional 
reconstruction and metabolic reconstruction of metagenomes are being used. The first 
one relies on directly characterizing the function of a sequenced metagenomic read by 
alignment to a catalogue of known genes with known functions. The second approach 
makes use of alignment of reads to assembled contigs or genes and infers function of 
reads by the annotated function of the genes. The former approach avoids the de novo 
assembly step and could potentially detect rare functions which have not been 
assembled. The latter approach benefits from longer and often complete gene sequences 
that can be more precisely annotated.  

Examples of tools for direct functional annotation of metagenomic reads are the online 
service MG-RAST (Meyer et al., 2008) and the standalone tools MEGAN (Huson et al., 
2007) and HUMaN (Abubucker et al., 2012). Large scale metagenomics projects have 
annotated the functional potential by first performing de novo assembly of reads and 
inferring abundance by alignment of reads to genes (Qin et al., 2010; Qin et al., 2012). 
Typically, metagenomic genes are compared to genes in functional databases such as 
NCBI (www.ncbi.nlm.nih.gov), KEGG (Kanehisa et al., 2004), COG (Tatusov et al., 2003) 
and the Carbohydrate-Active enZYmes Database (CAZy) (Cantarel et al., 2009). KEGG is 
a database with complete genomic information for thousands of microbial genomes and 
detailed annotations of their genes to functions with a special focus on metabolism. 
Specific functions are grouped into pathways and functional categories in a hierarchical 
manner in the KEGG database. The detailed annotation of metabolic genes to 
biochemical reactions and metabolites in KEGG makes this database especially useful 
for metabolic reconstructions and modeling. The CAZy database stores a detailed 
description about carbohydrate active enzymes and their genes which is important in the 
study of the human gut metagenome because undigested polysaccharides make up a 
major part of the energy and carbon source of the human gut microbiota. Carbohydrate-
active enzymes degrade, modify or create glycosidic bonds that make up polysaccharides 
and these are grouped into hundreds of enzyme families. In summary, the metagenome 
content and the purpose of the study should guide the use of different tools and 
databases. 
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2.5.4. Statistical methods for differential abundance analysis 
A taxonomical or functional profile of a metagenome is interesting and useful 
information on its own for describing a microbial community but often a comparison 
between communities to describe their commonalities and differences are of interest. The 
challenge is thus to differentiate true differences between groups as opposed to 
measurement error and biological noise.  

Because of the non-normal distribution of metagenomic data that is often observed, non-
parametric tests such as Kruskal-Wallis and Wilcoxon rank-sum tests are used for 
testing whether samples originate from the same distribution. The Student’s t-test 
assumes that data from both groups is normally distributed which is typically not the 
case in metagenomics. The assumption in Kruskal-Wallis and Wilcoxon rank-sum tests 
is that data distribution from the tested groups has the same shape. Large metagenome 
studies of the human gut comparing lean and obese individuals as well as diabetic to 
non-diabetic individuals have used Wilcoxon rank-sum test which have provided 
sufficient power to call differences between groups (Le Chatelier et al., 2013; Qin et al., 
2012). In smaller studies, Wilcoxon rank-sum test might not be powerful enough to 
detect true differences between groups. In such cases parametric tests are available and 
could be used if the distribution of data allows. Parametric tests are likely more 
appropriate for testing the differential abundance of functional classes which has lower 
variance than taxonomic features or individual genes (Turnbaugh et al., 2009). One such 
approach is to use a Poisson model with the possibility to correct for over-dispersion for 
statistical comparison of metagenomes (Kristiansson et al., 2009). LefSe is a statistical 
methods that rely on Wilcoxon rank-sum test with an additional step to estimate the 
effect size (Segata et al., 2011). METASTAT is another method that uses t-tests with 
sample permutation for detecting differentially abundant features in a metagenome 
(White et al., 2009). Using permutation techniques in statistical tests risk being 
computationally costly, and can be problematic if the number of tests to perform is large. 
To control the number of false positive results when multiple tests are performed, p-
values are typically corrected to control the false discovery rate, e.g. with the method 
presented by Benjamini and Hochberg (Benjamini and Hochberg, 1995).  

 

2.6. Metabolism by gut microbiota 
Along the intestinal tract microorganisms contribute to the degradation and 
consumption of dietary components. Some dietary components such as polysaccharides 
can be degraded by microorganisms to a greater extent compared to the capabilities of 
human enzymes. Polysaccharides that are available for the large intestinal microbiota 
include resistant starch, non-starch polysaccharides plant fiber, unabsorbed sugar and 
host derived glycans such as mucins. The total amount of polysaccharides that is 
available to the microbiota is estimated to be in the order of 10-60 g per day (Rosenberg 
et al., 2013). Degradation of polysaccharides is a complex process that involves several 
different enzymes, and is often done stepwise with a variety of enzymes degrading 
different glycosidic bonds between different sugar monomers. Intermediates of 
degradation and sugar monomers could thus be made available to other species than 
primary degraders which could result in extensive cross feeding.  Bacteroides species are 
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known to carry a large number of glycoside hydrolases in their genomes, B. 
thetaiotaomicron has 172 glycoside hydrolase genes which makes it well equipped for 
handling large number of different polysaccharides (Xu et al., 2003).  

Degradation of undigested polysaccharides by the gut microbiota results in byproduct 
excretion which is typically in the form of short chain fatty acids (SCFAs) and gases such 
as carbon dioxide, hydrogen and methane (Figure 2). The main SCFAs are acetate, 
propionate and butyrate and their concentrations in feces have been estimated to 
50.5±12.6, 13.6±5.2 and 14.1±7.6 mM (Schwiertz et al., 2010). SCFAs serve as an 
important substrate for human colonocytes and stimulate mucus production and cell 
proliferation. Butyrate is especially important and constitute 60-70% of the energy used 
by colonocytes (Topping and Clifton, 2001). Propionate absorbed from the gut lumen 
could be used for gluconeogenesis by the liver (Wolever et al., 1991) and levels of 
propionate in the venous blood is very low indicating that most is metabolized by the 
liver (Wolever et al., 1989). Acetate is detectable in venous blood and rectal infusions 
result in a fall in serum free fatty acids and a rise in total cholesterol and triglycerides 
(Wolever et al., 1989). Furthermore, SCFAs act as signaling molecules in the human host 
and regulate inflammation and host energy balance by signaling through the G-protein 
coupled receptors 43 (Maslowski et al., 2009) and 41 (Samuel et al., 2008), respectively. 
Taken together, this clearly shows the important metabolic cross talk and 
interdependence between the microbiota and the host.  

 

Figure 2 Overview of metabolism by the gut microbiota. The figure shows a very 
simplified and schematic overview of the main metabolic activity of degrading 
polysaccharides to short chain fatty acids and other end products.  
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2.7. The human gut microbiota and metabolic diseases 
The gut microbiota and its host interact in a symbiotic relationship but when mutualistic 
or commensal bacteria are replaced or outcompeted by less favorable or pathogenic 
species, dysbiosis can occur. A growing amount of literature is showing that metabolic 
diseases and obesity are associated with changes in the composition of the gut microbiota 
(Table 1). Initial results were sometimes conflicting and a possible reason could be that 
the methods used mainly gave coarse taxonomic classifications or the complicated 
interplay between the diet, gut microbiota and host. Evidence in experimental animals 
suggests that a disturbed microbiota could cause weight gain and an adiposity associated 
metabolic profile, an initial study suggests the same causal relationship in humans as in 
experimental animals. The section will give an overview of known associations between 
metabolic diseases and the gut microbiota, suggested mechanisms and evidence that 
support the causal role of the microbiota in disease development.  
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Table 1 Studies of associations between gut microbiota and metabolic diseases and 
weight-loss intervention in humans 

Disease/Intervention Study 
Obesity (Ley et al., 2006) 

(Kalliomaki et al., 2008) 
(Duncan et al., 2008)  
(Turnbaugh et al., 2009) 
(Zhang et al., 2009) 
(Schwiertz et al., 2010) 
(Furet et al., 2010) 
(Zupancic et al., 2012) 
(Le Chatelier et al., 2013) 
 

Type 2 diabetes (Larsen et al., 2010)  
(Qin et al., 2012) 
(Karlsson et al., 2013)  
 

Type 1 diabetes (Brown et al., 2011) 
 

Atherosclerosis/Cardiovascular 
disease 

(Koren et al., 2011)  
(Karlsson et al., 2012) 
 

Weight-loss interventions (Ley et al., 2006) 
(Duncan et al., 2008) 
(Zhang et al., 2009) 
(Furet et al., 2010) 
(Kong et al., 2013) 
(Graessler et al., 2013) 
(Cotillard et al., 2013)  

 

2.7.1. Obesity 
Development of obesity is due to an excess of energy intake compared to energy 
expenditure. The energy balance is dependent on several environmental and genetic 
factors such as diet, exercise and regulation of physiological functions. Inheritability of 
obesity is 40-70% but even with very large genome wide association studies, the 
proportion of explained genetic variance of body mass index using 32 validated markers 
is only 1.45% (Speliotes et al., 2010). This suggests that other inheritable factors are 
important for the development of obesity. The gut microbiota plays an important role by 
partly processing the food we eat and regulates the immune system.  

Alterations between components of the gut microbiota and obesity have been observed in 
several studies. The ratio between the two major phyla in the human gut, Bacteroidetes 
and Firmicutes were found to be associated with obesity with increased level of 
Firmicutes in the obese flora (Ley et al., 2006). The ratio was restored in individuals 
following a weight loss program. Later reports could not confirm this altered ratio 
between the two major phyla and found no difference (Duncan et al., 2008) or an opposite 
association (Schwiertz et al., 2010). It has also been suggested that the higher levels of 
SCFAs found in obese subjects are relevant for obesity (Schwiertz et al., 2010). The 
Bacteroidetes to Firmicutes ratio is a rough measure of the composition in the human 
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gut, the Firmicutes phyla contains some clearly pathogenic species such as Clostridium 
botulinum and Listeria monocytogenes as some that are generally regarded as beneficial 
to the host such as Faecalibacterium prausnitzii and Eubacterium rectale. This shows 
that the broad description of the obese gut microbiota is not enough and that more 
specific methods are needed. A reduced diversity of the microbiota has been observed in 
obese Danish and American individuals (Le Chatelier et al., 2013; Turnbaugh et al., 
2009).  

To elucidate whether alterations is the gut microbiota are causing obesity and 
underlying mechanisms, intervention studies and work using experimental animals are 
crucial. Transplantations of gut microbiota of lean and obese mice to germ-free recipients 
have shown that the obesity phenotype is transferable by the microbiota. Flora from 
genetically obese (ob/ob) and diet induced obese mice has the potential to cause obesity in 
recipients (Turnbaugh et al., 2008; Turnbaugh et al., 2006). Interestingly, there seems to 
be a similar causal relationship in humans.  Transfer of intestinal microbiota from lean 
donors to recipients with the metabolic syndrome resulted in improved glucose 
metabolism and insulin sensitivity together with increased levels of butyrate producing 
bacteria (Vrieze et al., 2012). Transfer of whole microbial fractions is controversial 
because the potential risk of transferring pathogenic organisms and isolated cultured 
fractions of beneficial microbes that has the same improvements to health is desirable.  

Several mechanisms for the influence of the gut microbiota on obesity have been 
proposed. Increased energy harvest by breakdown of otherwise indigestible 
carbohydrates to short chain fatty acids have been proposed to be contributing to 
increased energy intake (Turnbaugh et al., 2006). The gut microbiota interplays with the 
signaling and regulatory network of the host and thereby regulates the energy balance. 
It has been shown that the gut microbiota promotes monosaccharide absorption and 
suppresses the fasting-induced adipocyte factor (fiaf) in intestinal tissue.  Fiaf is an 
inhibitor of lipoprotein lipase and increased lipase activity results in increased storage of 
fat in adipocytes (Backhed et al., 2004). SCFAs play a signaling role by acting on the G-
protein coupled receptor 41 (Gpr41) and Gpr41-/- mice are leaner than their wild type 
littermates but this effect is not evident in germ-free conditions. Gpr41-/- mice have 
lower expression of PYY, a gut derived hormone acting to slow down gastrointestinal 
transit. Knockout of Gpr41 results in reduced levels of PYY and increased transit rates 
resulting in more energy being excreted with feces (Samuel et al., 2008). Given the 
background above, it is clear that it is not only one single mechanism that could explain 
how the gut microbiota could increase adiposity and the important species that could 
play a role are yet not identified. 

2.7.2. Type 2 diabetes 
Obesity is a major risk factor for Type 2 diabetes (T2D) and the two are closely 
associated. The associations and mechanisms for the relation between obesity and the 
gut microbiota are relevant also for T2D but it is also important to investigate the 
specific associations and mechanisms that might trigger the onset of T2D. T2D is 
characterized by insulin resistance and sometimes reduced insulin production, resulting 
in poor cellular uptake of glucose and elevated levels of blood glucose. T2D is the most 
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common form of diabetes and around 350 million people are presently affected (Danaei et 
al., 2011).  

Using qPCR and sequencing of the V4 region of the 16S rRNA gene to study the gut 
microbiota in 36 male adults, compositional changes in the gut microbiota was found to 
be associated with diabetes. Clostridia were significantly reduced in diabetic subjects 
while Betaproteobacteria were enriched. Furthermore, the Bacteroides-Prevotella group 
to C. coccoides -E. rectale  ratio and Lactobacillus correlated positively to plasma glucose 
after an oral glucose tolerance test (Larsen et al., 2010). A larger study of the gut 
metagenome in 345 Chinese individuals found that 60 000 genes were associated with 
T2D and found that butyrate producing bacteria were depleted in T2D individuals (Qin 
et al., 2012).  

T2D is associated with low-grade inflammation, for example increased levels of pro-
inflammatory cytokines. The increased levels of cytokines are deleterious for insulin 
sensitivity. Lipopolysaccharides, a membrane component of Gram-negative bacteria are 
triggers of inflammation and are elevated in mice on a high fat diet. Feeding of high fat 
diet resulted in reduced levels of Bifidobacteria and C. coccoides-E. rectale (Cani et al., 
2007). In a study of mice lacking a receptor for bacterial flagellin, TLR5, alterations in 
the gut microbiota was observed as well as increased adiposity, low-grade inflammation 
and insulin resistance (Vijay-Kumar et al., 2010). When the microbiota of mice lacking 
the TLR5 receptor was transplanted into germ-free mice, recipients had worse glucose 
metabolism and higher levels of inflammation compared to recipients of a wild-type gut 
microbiota.  

2.7.3. Atherosclerosis and cardiovascular disease 
Cardiovascular disease (CVD), with manifestations such as heart attack and stroke, is 
the most common cause of death representing about 30% of deaths worldwide. Diabetes 
and obesity are major risk factors for cardiovascular disease. Buildup of plaques in the 
arterial wall by cholesterol and macrophages could eventually rupture and clog the blood 
flow downstream resulting in stroke or heart attack. The plaques contain bacterial DNA 
from the genera Chryseomonas, Veillonella, and Streptococcus which are also present in 
oral and gut samples (Koren et al., 2011).  

Metabolomics studies in humans have identified trimethylamine (TMA) and 
trimethylamine N-oxide (TMAO) as risk factors for development of CVD. Mechanistic 
investigations have suggested that microbial metabolism of phosphatidylcholine 
produces TMA which is absorbed and converted to TMAO in the liver. Supplementation 
with choline resulted in more plague formation but suppression of the gut microbiota by 
treatment with antibiotics alleviated the symptoms (Wang et al., 2011). TMA and TMAO 
were also found to being produced by dietary L-carnitine by the gut microbiota. Vegans 
and vegetarians were found to be producing less TMA and TMAO from a 
supplementation of L-carnitine compared to omnivorous individuals (Koeth et al., 2013). 

Microbiota metabolism of bile acids by the gut microbiota is of special interest in the 
context of atherosclerosis. Bile acids are synthesized from cholesterol in the liver, 
released in the duodenum, serve as detergents that solubilize dietary lipids and are 
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actively reabsorbed in the distal ileum. Microbial metabolism of bile acids in the small 
intestine and colon by deconjugation and dehydroxylation produces secondary bile acids.  
The secondary bile acid lithocolic acid is lost in feces which results in a net loss in the 
enterohepatic circulation of bile acids, thus draining cholesterol (Ridlon et al., 2006). The 
role of microbial metabolism of bile acids in atherosclerosis is not clear. Attempts have 
been made to use probiotic bacteria to lower serum cholesterol with mixed effects in 
humans (Ooi and Liong, 2010).  

2.7.4. Weight-loss interventions 
Interventions to reduce weight and improve metabolic profile such as improving insulin 
sensitivity and lowering cholesterol include dietary interventions, exercise, medication 
and bariatric surgery. Effects on the microbiota of the above interventions have been 
shown but it is sometimes difficult to separate the effect of the intervention itself and the 
weight-loss. The relative abundance of Bacteroidetes was increased in individuals who 
were assigned a fat restricted or carbohydrate restricted weight loss diet followed over 1 
year (Ley et al., 2005). The total sequencing depth of the study was just over 18 000 16S 
rRNA sequences which is low by today’s standards. In a study of 23 individuals 
undergoing a weight loss regimen did not find any differences in the abundance of 
Bacteroides using quantitative fluorescent in situ hybridization (FISH) to study the 
composition of fecal microbiota (Duncan et al., 2008). From these two studies, 
conclusions are not coherent possibly because diets, study design and methods for 
assessing the microbiota differed. In a study of 49 individuals using deep metagenomic 
sequencing to assess the microbiota, it was found that dietary intervention by an energy 
restricted high protein diet resulted in higher diversity in individuals who initially had a  
low diversity (Cotillard et al., 2013).  

Bariatric surgery is an efficient method to reduce weight in severely obese individuals 
and reduce the risk of diabetes and cardiovascular disease (Sjostrom et al., 2004; 
Sjostrom et al., 2007). Several different bariatric surgical procedures exist that restrict 
the size of the stomach or gastric bypass by rerouting the stomach and the small 
intestine. The microbiota is altered after bariatric surgery by increased levels of 
Proteobacteria, as was shown in a study comparing lean, obese and post-gastric-bypass 
surgery individuals (Zhang et al., 2009). The increase in Proteobacteria and in particular 
E. coli was observed in a study following changes in the microbiota before and after 
gastric bypass surgery. Lactic acid bacteria such as Lactobacillus decreased after surgery 
(Furet et al., 2010). Yet another more recent study also found an expansion of 
Proteobacteria after gastric bypass and a decrease in Lactobacillus, Dorea and 
Bifidobacterium, overall the diversity in the microbiota increased (Kong et al., 2013). 
Overall, the changes in microbiota after gastric bypass is more clear and coherent 
between studies compared to diet interventions. This is likely due to the fact that 
bariatric surgery is a more drastic intervention compared to a diet intervention.  

 

2.8. Systems biology and metabolic modeling 
The term systems biology relates to a field that uses mathematical models and networks 
to study complex biological systems containing several interacting components. Systems 
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biology has the power to identify emergent properties from simple interacting 
components that a reductionist approach might not reveal. Data may be generated in a 
high-throughput way e.g. genomics, transcriptomics, proteomics or metabolomics. By use 
of networks and mathematical models that considers the interactions between the 
components, a better understanding can be obtained compared to looking at the 
components in isolation. An interesting result from systems biology analysis could be 
emergent properties that arise from simple interactions of several components and could 
not be seen or predicted by analysis of individual components.  

Metabolism plays a particular important role in the interaction between the human host 
and its gut microbiota. As have been described in previous chapters, metabolism of 
dietary components by the gut microbiota can be extensive and microbially produced 
metabolites are readily found in human blood (Li et al., 2008). Metabolism is responsible 
for providing the building block for microbial biomass and the free energy needed to 
maintain life. Genome scale metabolic models (GEMs) are collections of metabolic genes 
and their stoichiometric reactions of an organism and constitute a powerful tool for 
addressing metabolic questions. The first organism to be reconstructed was Haemophilus 
influenzae in the year 2000 (Schilling and Palsson, 2000). Since then, a large number of 
GEMs have been reconstructed for model organisms, medically and industrially relevant 
species.  

Reconstruction of a GEM for an organism starts with collection of gene-protein-reaction 
associations and is typically based on experimental or genomic inferences. Several 
bioinformatics tools are available that automatize many steps of the reconstruction 
(Agren et al., 2013; Henry et al., 2010). Biochemical reactions are defined in a matrix S 
with the stoichiometric coefficients, rows correspond to metabolites and columns 
correspond to reactions. Genomic and biochemical reaction databases such as KEGG 
(Kanehisa et al., 2004) are very useful for automatic reconstruction (Figure 3). A number 
of manual steps are necessary, such as definition of biomass components, gap filling and 
fitting of parameters for growth rate.  
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Figure 3 Reconstruction of a genome-scale metabolic model. 1) Reconstruction starts 
with a genome sequence of the organism. 2) Information from the literature and public 
databases about the biochemical conversion performed by genes of the organism is 
collected. 3) Reaction converting metabolites are assembled into a stoichiometric matrix. 
4) Gene-protein-reaction associations together with the exact stoichiometric description 
of reactions and metabolites are combined into what is called a genome scale metabolic 
model.  

The reactions connect metabolites into a metabolic network and constitute a framework 
for mapping high-throughput data onto. One important example is to use the link 
between metabolites, reactions and genes in a concept called reporter features. 
Transcriptomic data can be mapped onto the metabolic network and reveal reporter 
metabolites around which there are extensive transcriptional changes (Oliveira et al., 
2008; Patil and Nielsen, 2005). However, GEMs are not merely gene-metabolite 
mappings, they are detailed collections of biochemical reactions that have undergone 
manual curation and gap filling to constitute a functional metabolic network with 
complete pathways from substrate to biomass components. Reactions are checked for 
mass/charge balance, thermodynamic feasibility and gaps, dead ends and blocked 
reactions are resolved. Biomass composition is determined by experimental 
measurements or literature and a reaction for biomass formation is added. Flux balance 
analysis can be used to simulate fluxes of an organism operating at steady state that 
fulfill maximization of an objective function under given constraints. This can be 
formulated mathematically:  
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max 𝒄𝑻 ∙ 𝒗 

Subject to: 

𝑺 ∙ 𝒗 = 𝟎  

𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑠 ≤ 𝒗 ≤ 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑠 

Where c is a vector with a coefficient for each reaction that specifies a linear combination 
of fluxes to be maximized and v is a vector with the rate of each reaction, S is the 
stoichiometric matrix that defines the metabolic network. The fluxes are constrained by 
bounds that limit the solution space. The origin of the constraints could be 
thermodynamics, compartmentalization, diffusion, enzyme capacity or experimental 
observations and constitute limitations for the system.  
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3. Results and discussion 
This section summarizes the publications that are the basis of this thesis. The results 
can be sectioned into three parts. In the first part (section 3.1), the results from three 
metagenomic studies are presented where the association between the gut metagenome 
and metabolic diseases and bariatric surgery are studied. The second part (section 3.2) 
presents two bioinformatics tools for metagenomic data analysis that have been 
developed alongside with the data analysis of gut metagenomes. The third part presents 
(section 3.3) a systems biology and modeling approach to study the gut microbiota. 
Metabolic models of three important species in the human gut are described and 
validated.  

3.1. Association of the human gut metagenome with metabolic 
diseases 

In this section, results from three studies (Paper I-III) of the gut metagenome 
association with symptomatic atherosclerosis, diabetes and bariatric surgery are 
presented separately. Paper IV is a review of recent results in the field of gut 
metagenome and metabolic diseases. Common lessons from the three metagenome 
studies and recent results from the literature are compared in section 3.1.4.  

 

3.1.1. Paper I: Associations between the gut metagenome and symptomatic 
atherosclerosis 

Cardiovascular disease, with its manifestations myocardial infarction and stroke, is 
caused by accumulation of cholesterol and macrophages to the arterial wall that 
eventually ruptures and restricts the blood flow to the heart and brain, respectively. The 
gut microbiota has been implicated as an environmental factor that modulates host lipid 
metabolism (Backhed et al., 2004; Backhed et al., 2005; Cani et al., 2007; Ley et al., 
2006). The gut microbiota can be a source of inflammatory molecules such as 
lipopolysaccharides and peptidoglycan that can contribute to metabolic disease (Cani et 
al., 2007; Erridge et al., 2007; Schertzer et al., 2011). To address the question whether 
the gut metagenome is associated with cardiovascular disease, we sequenced the gut 
metagenome of patients (n=12) who had manifestation of emboli to the brain or retinal 
artery with severely stenotic plaques in the carotid artery. As a control group (n=13), 
gender and age matched controls without large and potentially vulnerable plaques in the 
carotid artery were recruited.   

DNA from fecal samples was extracted by a previously published method (Salonen et al., 
2010). The isolated metagenomic DNA was sequenced using the Illumina HiSeq2000 
instrument and 100 bp paired end reads were generated. On average, 12.5 ±4.7 (SD) 
million reads were generated per sample. Low quality and contaminant reads were 
removed.  

Taxonomic characterization was done by aligning the metagenomic reads to a catalogue 
of 2382 sequenced prokaryotic genomes. Most reads aligning to the genomes were 
bacterial (98±4% (s.d.)) and the dominating phyla were Bacteroidetes and Firmicutes 
(see Figure 1 for an overview of the main phyla and genera). The genus Collinsella was 
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enriched in patients whereas Eubacterium and Roseburia and three species of 
Bacteroides were enriched in control subjects (adj. P<0.05, Wilcoxon rank-sum test; 
Figure 4). Eubacterium and Roseburia species are known butyrate producers and acetate 
utilizers (Duncan et al., 2002; Mahowald et al., 2009) and the importance of butyrate 
producing bacteria and their decrease in inflammatory bowel disease have been reviewed 
by Lois and Flint (Louis et al., 2010).  

 

Figure 4 Microbial composition associated with symptomatic atherosclerosis. Abundance 
of bacterial genera (top) and species (bottom) that differ between patients (P) and 
controls (C), Adj. P <0.05 for all comparisons. Boxes denote the interquartile range 
(IQR) between the first and third quartiles and the line within denotes the median; 
whiskers denote the lowest and highest values within 1.5 times IQR from the first and 
third quartiles, respectively. Circles denote data points beyond the whiskers. 

Several Clostridiales genera correlated negatively with the inflammatory marker high-
sensitivity C-reactive protein (hsCRP) (Figure 5). At the species level, Clostridium sp. 
SS2/1 and SSC/2 negatively correlated (Spearman’s correlation, adj. P<0.05) with hsCRP 
and these are both characterized as butyrate producing bacteria.  
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Figure 5 Genera correlating with clinical biomarkers. Spearman’s correlation was 
calculated between abundance of genera and clinical biomarkers and the strength of 
correlation is indicated by color. *Adj. P<0.05, **adj. P<0.01 and ***adj. P<0.001 

It has been suggested that the human gut microbiota variation can be stratified into 
three enterotypes and that the variation is not continuous (Arumugam et al., 2011). 
Using the same methods as presented in the publication, we could also identify 
enterotypes in our cohort (Figure 6). Recently, there has been a debate whether there are 
distinct enterotypes and if these are stratified or continuous (Koren et al., 2013). 
Furthermore, the cutoff that should be used for identification of discrete clusters has also 
been debated and whether the clusters are universal to all regions or restricted certain 
geographies (Yatsunenko et al., 2012). In this cohort, we find enterotypes driven by 
Bacteroides, Prevotella and a third enterotype where the driver genus is less clearly 
defined but in which Ruminococcus is enriched. Here we found that patients were 
overrepresented in the Ruminococcus enterotype and controls were overrepresented in 
the Bacteroides enterotype.  

 

Figure 6 Enterotypes of the gut microbiota.a) Based on the abundance of genera in the 
cohort using the clustering method presented in (Arumugam et al., 2011), three 
enterotypes could be identified. Controls and patients are denoted by filled triangles and 
empty triangles, respectively and two subjects not included in the comparison are 
represented by empty circles. b) Abundance of three genera suggested being drivers of 
the enterotypes. Boxes denote the interquartile range (IQR) between the first and third 
quartiles and the line within denotes the median; whiskers denote the lowest and 
highest values within 1.5 times IQR from the first and third quartiles, respectively. 
Circles denote data points beyond the whiskers. 
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We performed de novo assembly of the sequence data, first for each individual sample 
separately and subsequently for a pool of all the non-assembled data from the individual 
samples to create one global gene catalog of our cohort. Genes were predicted from the 
contig set and these genes were functionally annotated to KEGG. Reads were aligned to 
the contigs and their position was recorded to estimate gene abundance. When a 
comparison was made of gene abundance between patients and controls, a total of 225 
KOs were differentially abundant (adj. P<0.05, Wilcoxon rank-sum test). By using the 
reporter feature algorithm we could identify KEGG pathways associated with 
symptomatic atherosclerosis and the highest scoring was the peptidoglycan biosynthesis 
pathway. Peptidoglycan is known to activate the immune system through the nucleotide 
oligomerization domain proteins and activation has been linked to metabolic disease 
(Schertzer et al., 2011) and inflammation is known to contribute to atherosclerotic 
disease (Hansson, 2005). Furthermore, we found metabolic genes that had negative 
correlation with inflammation; the highest scoring association being butyrate-
acetoacetate CoA-transferase (K01036) with hsCRP (Spearman’s r=0.73, adj. P=0.04). 
This finding is in agreement with the taxonomic analysis above which also identified 
known butyrate producers negatively correlated with hsCRP. Butyrate has been 
identified as a negative regulator of inflammation through G-protein coupled receptor 43 
(Maslowski et al., 2009). The most significantly enriched function in controls was the 
phytoene dehydrogenase (K10027), involved in the metabolism of lipid-soluble 
antioxidants such as the carotenoids lycopene and β-carotene (Figure 7). We evaluated 
whether controls also had increased levels of carotenoids, and found increased levels of β-
carotene (P=0.05, Student’s t-test), but not lycopene, in serum of healthy controls 
compared with patients.  

 

Figure 7 Phytoene dehydrogenase genes are enriched in the metagenome of healthy 
controls.β-carotene (P=0.05 Student’s t-test) is enriched in the serum of healthy controls 
but not lycopene. Boxes denote the interquartile range (IQR) between the first and third 
quartiles and the line within denotes the median; whiskers denote the lowest and 
highest values within 1.5 times IQR from the first and third quartiles, respectively. 
Circles denote data points beyond the whiskers. 

High levels of β-carotene and lycopene are associated with a reduced risk of 
cardiovascular disease (Kardinaal et al., 1993; Kohlmeier et al., 1997) but 
supplementation of these compounds have not proven to be protective (Hennekens et al., 
1996; Kritchevsky, 1999). On the other hand, a study of over 500 individuals failed to 
observe an association between lycopene intake and plasma lycopene levels (Bermudez 
et al., 2005) indicating that other mechanisms might be more important in determining 
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plasma levels than oral intake of lycopene. Furthermore, bacterial species from the 
human gut have been shown to produce carotenoids (Khaneja et al., 2010; Perez-Fons et 
al., 2011). These findings represent an important step towards elucidating the role of 
carotenoids in atherosclerotic by highlighting the potential role that the microbiota could 
play in producing carotenoids.   

3.1.2. Paper II: Gut metagenome in women with normal, impaired and diabetic 
glucose control 

Diabetes is a disease where blood level glucose is elevated and in the case of T2D, this is 
a result of insulin resistance and in some cases failure of the pancreas to produce 
insulin. Studies have shown that genetic markers are poor predictor of future diabetes 
whereas environmental factors and socio-economic factors have greater influence (Noble 
et al., 2011). In this study, the fecal metagenome of 145 European women with T2D 
(n=53), impaired glucose tolerance (IGT; n=49) or normal glucose tolerance (NGT; n=43) 
glucose control were studied. From these samples, 453 Gbp of sequence was generated or 
3.1±1.8 Gbp per sample by the Illumina Hiseq 2000 instrument. Data was analyzed by 
comparing to a set of reference genomes and also do novo assembled and functional 
analysis. A set of 2382 reference genomes were collected from NCBI and HMP 
(http://www.hmpdacc.org) and metagenomic reads were aligned to these genomes using 
Bowtie (Langmead et al., 2009). The relative abundance of each genome was calculated 
and increases in four Lactobacillus species while decrease in five Clostridium species 
was observed in T2D subjects compared to NGT (adjusted P<0.05, Wilcoxon rank-sum 
test). The abundance of Lactobacillus species correlated positively with fasting glucose 
and HbA1c in the total cohort (adjusted P<0.05, Spearman correlation). The abundance 
of Clostridium species correlated negatively with fasting glucose, HbA1c, insulin, C-
peptide and plasma triglycerides and positively with adiponectin and HDL (adjusted 
P<0.05, Spearman correlation).  

To fully make use of the metagenomic data, de novo assembly was performed on 
individual gut metagenomes and then a global assembly on unassembled reads. Genes 
were predicted on the assembly and a non-redundant gene catalogue was constructed 
which was then merged with the MetaHIT gene catalogue (Qin et al., 2010). Reads were 
aligned to the combined gene catalogue to acquire individual quantitative measures of 
the gut metagenomes. Microbial genes come in sets of genomes and genes from the same 
genome should follow the same abundance pattern across individual samples. Using this 
assumption, we clustered genes based on their profile across samples. We considered 
only genes present in at least 10 subjects and calculated the correlation coefficient 
between genes across subjects (Figure 8).  
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Figure 8 Reconstruction of metagenomic clusters. Genes in the same genome should 
have a similar abundance across samples and were clustered based on their co-
occurrence.  

Highly correlated sets were defined as metagenomic clusters (MGCs) and the 800 largest 
clusters contained at least 104 genes or 550,188 genes in total (Figure 9). The 
phylogenetic origin of the MGCs was determined by alignment of genes against the 
NCBI nr with blastp and determination of the lowest common ancestor (LCA) by 
requiring that 50% of the genes had a best hit to the same phylogenetic group. Results 
show that 36% of the MGCs could be determined at the species level (Figure 9). MGCs 
with a LCA at the order level were mainly from the Clostridiales (98%) and these are 
known to be taxonomically difficult to define (Arumugam et al., 2011).  

 

 

 

Figure 9 Characterization of the 800 largest metagenomic clusters (MGCs) (>104 genes). 
a) Histogram of the number of genes in each MGC. b) Taxonomic classification detail of 
MGCs. 

The abundance of a MGC was calculated by summing the abundance of the member 
genes. The 800 largest MGCs were compared between the NGT and T2D group and 26 
were found to be differentially abundant between the two groups (adjusted P <0.05, 
Wilcoxon rank-sum test). The MGCs enriched in T2D subjects and identified at the 
species level were Lactobacillus gasseri, Clostridium clostridioforme and Streptococcus 
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mutans. L. gasseri correlated positively with fasting glucose and HbA1c, whereas C. 
clostridioforme correlated positively with triglyceride and C-peptide levels. The MGCs 
enriched in the NGT group were from Roseburia, Clostridium, two Eubacterium eligens, 
several Clostridiales, Coriobacteriaceae and one Bacteroides intestinalis.  

Using gut metagenomic data as an identifier for diabetes status was tested by training a 
random forest model to classify NGT and T2D individuals based on their species and 
MGC abundance profiles. The performance was evaluated with tenfold cross-validation 
and the performance assessed using a receiver operating characteristic (ROC) analysis. 
The discriminatory power of the models were calculated as the area under the ROC 
curve (AUC), T2D was identified more accurately using MGCs (highest AUC=0.83) than 
with microbial species (highest AUC=0.71) (Figure 10). The most important predictors in 
the models were very similar to the differentially abundant species and MGCs and are 
shown in Figure 10, the most important predictor in both models was L. gasseri.  

 

 

 

Figure 10 Classification of T2D by species and MGC abundance. a) Performance of 
random forest models on discriminating NGT and T2D subjects assessed by area under 
the receiver-operating characteristic curve (AUC). Performance was evaluated with an 
increasing number of species/MGCs. b) The 30 most important MGCs discriminating 
between NGT and T2D. c) The 30 most important species discriminating between NGT 
and T2D. The bar lengths in b and c indicate the importance of the MGC/species, and 
colors represent enrichment in NGT (blue shades) or T2D (red shades). 

We then used the model for discriminating diabetic status on the IGT subjects (n=49) 
and 34 of these were classified as T2D, 10 as NGT and 5 were uncertain based on their 
gut metagenome (Figure 11). Plasma levels of triglycerides and C-peptide were 
significantly higher in the subgroup classified as T2D compared to NGT. This suggests 
that the model identifies subjects in the IGT group with altered metabolism associated 
with risk factors for diabetes. 
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Figure 11 Stratification of IGT women using MGCs. a) Prediction results of 
classification of IGT subjects as NGT (blue) and T2D (red). b) IGT women predicted to 
be T2D had higher triglyceride levels (P=0.019 Wilcoxon rank-sum test). c) IGT women 
predicted to be T2D had higher C-peptide levels (P=0.030 Wilcoxon-rank sum test). 

Analysis of the functional composition of the gut metagenomes was performed by 
annotating the genes to the KEGG database. KEGG ortholog abundance was calculated 
and compared across groups.  Pathway annotations of KEGG orthologs and results from 
the differential abundance analysis were used in the reporter algorithm (Oliveira et al., 
2008) to identify reporter pathways. The pathways that were highest scored for 
enrichment in T2D metagenomes were starch and glucose metabolism, fructose and 
mannose metabolism and ABC transporters. The pathways that were highest scored for 
enrichment in NGT metagenomes were flagellar assembly and riboflavin metabolism. 
This suggests that the gut metagenome of T2D individuals is enriched in genes for 
simple sugar degradation while the metagenome of NGT individuals is enriched in 
vitamin production. Similar results were also observed in the Chinese T2D cohort (Qin et 
al., 2012). 

The above results were compared to a study of the gut metagenome in Chinese T2D and 
NGT individuals. In both studies, Clostridium clostridioforme MGCs were increased 
whereas Roseburia was decreased in T2D metagenomes. The Chinese T2D subjects had 
increased levels of Akkermansia muciniphila, Clostridium ramosum and depleted in 
Roseburia intestinalis, Faecalibacterium prausnitzii, Eubacterium and 
Erysipelotrichaceae which agrees with the published results (Qin et al., 2012). By using 
the procedure described above to train and evaluate a predictive model for diabetic 
status, an AUC of 0.82 was obtained for prediction within the Chinese population. 
However, cross comparison between populations yielded low AUC values. The most 
important predictor species and MGCs differed and also their relative abundance in the 
two cohorts.  
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3.1.3. Paper III: Long-term effects of bariatric surgery on the gut metagenome 
Bariatric surgery is the most effective treatment for severe obesity and its comorbidities 
while dietary interventions have limited efficacy for treating severe obesity. Several 
types of bariatric surgery exists and Roux-en-Y gastric bypass (RYGB) is the most widely 
used and have been shown to result in greater weight loss compared to Vertical banded 
gastroplasty (VBG), the weight-loss averages are 25% and 16% after a follow-up of 10 
years, respectively (Sjostrom et al., 2007). RYGB is also associated with improved 
response to a meal with higher levels of satiety hormones glucagon-like peptide 1 and 
peptide YY (Werling et al., 2013). The mechanisms that mediate weight loss after 
bariatric surgery are not fully understood. Reduced food intake, gastric emptying, bile 
acid metabolism and gut hormones have been suggested to contribute to weight loss. 
Alteration in the composition of the gut microbiota is a plausible contributor that needs 
further investigation.  

The gut microbiota is altered 3 months to about a year after RYGB surgery with 
increased levels of Proteobacteria, especially E. coli  (Furet et al., 2010; Kong et al., 2013; 
Zhang et al., 2009). The gut microbiota was studied with quantitative PCR or 
pyrosequencing of the 16S rRNA gene which gives information about the taxonomic 
composition. To gain understanding of also the functional composition, metagenomic 
sequencing is required. A study of the gut metagenome 3 months after bariatric surgery 
in 6 individuals showed an increase in genes assigned to the phosphotransferase system. 
In the study performed here, long term effects, with a follow up of more than 9 years, of 
bariatric surgery on the gut microbiota are investigated.  

The aim of this study was to sequence the gut metagenomes in patients who have 
undergone RYGB (n=7) and VBG (n=7) and compare these to those of severely obese 
(OBS, n=7, BMI=44.9±4.7 (SD)) and overweight or obese (CTR, n=9, BMI=31.9±2.7 (SD)) 
individuals. CTR individuals were included from the previous study described in Paper 
II, to control for differences in BMI and age but individuals in this group had a normal 
glucose control. Gut microbial DNA from fecal samples was sequenced with the Illumina 
Hiseq2000 instrument and in total 63 Gbp of paired-end reads was generated from the 
21 new samples from this study.  

The taxonomic composition of the gut microbiota was determined by alignment of 
metagenomic reads to a catalogue of 2,382 reference genomes obtained from the NCBI 
and HMP databases. Genus abundance was determined and is presented for each 
sample in Figure 12. Both Escherichia and Klebsiella are enriched in the RYGB 
compared to the OBS and CTR groups (Wilcoxon rank-sum test, adj. P<0.05). The same 
trend of enrichment of Escherichia is seen in the VBG group but does not reach 
statistical significance. At the species level, several E. coli species were enriched in the 
RYGB group and a few Firmicutes species were decreased from Clostridia and Gemella 
genera. VBG subjects show a similar trend of increasing Proteobacterial species but 
comparisons does reach statistical significance, if the adj. P<0.1 cutoff is used and then 
many of the same species are both enriched in RYGB and VBG.  
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Figure 12 Genus abundance profiles of bariatric surgery patients and controls. a) Genus 
abundance profiles of the 30 subjects ordered by surgery group. The 20 most abundant 
genera are shown and less abundant genera are grouped into others. b) Escherichia and 
Klebsiella are enriched in RYGB groups compared to OBS and CTR. 

The metagenomic reads were aligned to the MetaHIT gut microbial gene catalogue (Qin 
et al., 2010) using Bowtie2 (Langmead and Salzberg, 2012) and reads aligning to genes 
were counted. To calculate the abundance of the gene functions KEGG KOs, the provided 
annotations to the gene catalogue was used and the gene counts for each KO were 
summed. To assess differential KO abundance between groups, the R package edgeR 
(Robinson et al., 2010), was used. The catalogue was further annotated in more detail in 
a bile acid metabolizing enzymes as explained in detail in Paper III.  

To evaluate the diversity harbored in the gut metagenomes, a maximum of 11 million 
reads were sampled from the aligned reads and genes with aligning reads were counted. 
Results show that RYGB have a higher gene count compared to VBG individuals 
(Student’s t-test p=0.036 and Wilcoxon rank-sum test p=0.026) but other comparisons 
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were non-significant (Figure 13). An increased diversity assessed by the number of 
genera has been seen previously 3 and 6 months after RYGB (Kong et al., 2013).  

 

Figure 13 Gene richness in the gut metagenomes.  Gene richness is higher in RYGB 
compared to VBG.  

The gene functional differences between the groups were large, 932 and 1117 KOs were 
enriched in the RYGB compared to the OBS and CTR groups, respectively. In a similar 
way, 684 and 846 KOs were found to be enriched in the VBG group compared to the OBS 
and CTR groups respectively. Few changes were seen in the comparison of OBS and CTR 
or RYGB and VBG indicating that the two operated groups were affected similarly and 
that the two control groups were comparable. To summarize the overall changes in 
functional pathways, the reporter feature algorithm was employed as implemented in 
the R package Piano (Varemo et al., 2013). Fatty acid metabolism and two component 
systems were identified as reporter pathways enriched in the RYGB and VBG groups 
compared to control groups. Furthermore, also genes in the phosphotransferase system 
pathway were found to be enriched which has been observed also previously in a 
comparison of the gut metagenome 3 months after RYGB surgery (Graessler et al., 
2013).  

Bile acid metabolism is altered in obese compared to lean individuals and this is 
important because bile acids are closely related to cholesterol metabolism and act as 
detergents for uptake of dietary fat. Bile acid levels were measured in the serum of 
RYGB, VBG and OBS subjects after a standardized meal. RYGB subjects had higher 
postprandial levels of total bile acids as well as glyco- and tauro-conjugated bile acids in 
serum while VBG had intermediate and OBS low levels of total and conjugated bile 
acids. The observation that bile acid metabolism was different between the groups made 
it interesting to investigate the abundance of genes for bile acid metabolism in the gut 
metagenomes. Levels of genes in the specific pathway for 7α-dehydroxylation, BaiB, 
BaiCD, BaiE, BaiF, BaiG, BaiH and BaiI, had a trend for enrichment in the RYGB group 
but did not reach statistical significance (Adj. P 0.25-0.51).  
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The causal role of the gut microbial contribution to weight-loss after bariatric surgery 
was investigated by transplantation of whole microbiota into germ-free mice. Mice 
receiving either RYGB or VBG microbiota gained less body fat compared with recipients 
of OBS microbiota. The fat gain in RYGB recipients was also significantly lower 
compared to VBG recipients.  

In summary, the gut metagenome after bariatric surgery is altered to a large extent both 
taxonomically and functionally. The alterations are likely due to altered intestinal 
growth conditions such as pH, bile acid levels and nutrients related to host 
malabsorption. Fecal transplantation from human donors to germ-free mice here 
suggests that the altered gut metagenome contributes to the improved metabolism and 
weight reduction. Similar results have been shown by transplantation of gut flora RYGB 
operated mice to germ-free recipients, RYGB flora results in less body fat compared to 
flora from sham-operated mice (Liou et al., 2013). These results indicate that shifts in 
the microbiota contribute to reduced weight after bariatric surgery. 

 

3.1.4. Common lessons from the gut microbiome in metabolic diseases 
A common finding in the diabetes and symptomatic atherosclerosis patients was that 
they both have reduced levels of butyrate producing bacteria, Roseburia, Eubacterium 
and other Clostridiales species. Known butyrate producing species and genes for 
butyrate production was also negatively correlated with the inflammatory marker 
hsCRP in Paper I. Butyrate producing bacteria have also been associated with a number 
of healthy states compared to diseased. An example is that butyrate producing bacteria 
such as Roseburia species were found to be reduced in diabetic patients in China (Qin et 
al., 2012), obese individuals with poor metabolic and inflammatory profiles (Le Chatelier 
et al., 2013) and similarly a reduction in inflammatory bowel disease (Sokol et al., 2007; 
Sokol et al., 2008). There is a possibility that butyrate producers are a proxy for an 
unknown factor that is associated with a healthy microbiota. However, much evidence 
suggests that butyrate itself is beneficial to the host. Specifically butyrate has been 
shown to induce differentiation of T-regulatory cells, anti-inflammatory immune 
suppressing cells, and ameliorate the development of colitis (Arpaia et al., 2013; 
Furusawa et al., 2013). Butyrate is also known for providing energy and carbon to cells 
lining the intestine and supports the intestinal barrier function. Taken together, 
butyrate seems to be an important component of a healthy host-microbiota interaction 
but it cannot be ruled out that also other factors of bacteria characterized as butyrate 
producers is providing beneficial elements. To increase the levels of butyrate producing 
bacteria, several different approaches could be taken. Transplantation of gut microbiota 
to recipient with metabolic syndrome resulted in increased insulin sensitivity and higher 
levels of butyrate producing bacteria in the colon (Vrieze et al., 2012). Other strategies to 
increase the levels of butyrate producing bacteria have been reviewed by Louis and Flint 
(Louis and Flint, 2009). Diet rich in resistant starch and a colonic pH of around 5.5 
instead of 6.5 have been shown to promote butyrate production (Louis and Flint, 2009).  

There is less consensus into what direction the microbiota takes in a metabolic diseased 
state. In Paper I, Collinsella was enriched in patients with symptomatic atherosclerosis, 
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whereas in Paper II Lactobacillus and Streptococcus were enriched. A common finding in 
several studies of obesity and diabetes is the enrichment of Clostridium clostridioforme 
and related species in diabetic or obese subjects. C. clostridioforme has traditionally been 
used to group three related species, Clostridium bolteae, C. clostridioforme and 
Clostridium hathewayi, all who are infectious species with some resistance to antibiotics 
(Finegold et al., 2005). In Paper II, C. clostridioforme was found to be enriched in 
diabetic Swedish patients and patients from China. In the original publication C. bolteae 
and C. hathewayi were specifically reported to be enriched in Chinese diabetic patients 
(Qin et al., 2012). A study of obese and lean individuals associated C. clostridioforme and 
C. bolteae with a low diversity microbiome and overall adiposity, insulin resistance and 
dyslipidaemia (Le Chatelier et al., 2013). An experiment using germ-free mice as 
recipient of lean and obese human gut microbiota showed that lean donor microbiota 
conferred less weight gain and adiposity in recipient mice. C. clostridioforme and C. 
hathewayi were identified as sources from the obese microbiota and the former could 
colonize lean recipients if co-housed with obese while the abundance of the latter 
correlated with levels of branched chain amino acid (Ridaura et al., 2013). Taken 
together, these findings suggest that C. clostridioforme and related species should be 
further investigated to discern if it plays a role in promoting adiposity and insulin 
resistance.  

Bariatric surgery results in extensive alterations of the gut microbiota, mainly an 
expansion of Gammaproteobacteria and Escherichia, from <1% to ~20%, have been 
observed shortly after RYGB (Kong et al., 2013; Zhang et al., 2009) and also in a longer 
term as reported in Paper III. Experiments using germ-free mice as recipients of diet-
induced-obese mice who have undergone either RYGB or sham operations showed that 
RYGB flora recipients had less adiposity compared to recipients of sham flora (Liou et 
al., 2013). Escherichia was enriched after RYGB also in mice. The expansion of 
Escherichia is not generally considered to be associated with health compared to a 
metabolic diseased state. The mechanism by which the microbiota can confer lower 
adiposity in mice is therefore interesting and important to investigate. Furthermore, the 
microbial changes could also confer health complications besides its suggested 
contribution to reduced weight.  

Paper IV discussed the current literature about the associations between the gut 
microbiota, methods to study it as well as the use of germ-free mice as tools for 
discerning causal relationship between the host physiology and the microbiota.  

3.2. Bioinformatic tools for metagenomic data analysis 
Analysis of a metagenomic data set for discerning associations between metagenomic 
components and disease state and other clinical parameters involves several steps. The 
process can be divided into two main steps: (i) quality control, data filtering and 
annotation of sequence reads (ii) linking data clinical data to quantitative metagenomic 
features. Step (i) typically requires knowledge about a Linux operating system and 
knowledge about how to execute a range of bioinformatics programs and parallel 
computation. Step (ii) is less computationally demanding but could still demand 
programming and computational knowledge. To make these two tasks easier and lower 
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the hurdles for more researchers to analyze metagenomic data, two tools for are 
presented in Paper V and Paper VI.  

  

3.2.1. Paper V: FANTOM, an easy to use tool for metagenomic data analysis  
Analysis of metagenomic data has traditionally been a computationally intensive work 
that required knowledge in one or more programming languages. Many bioinformatics 
tools are designed for the Linux operating system and thus require knowledge in Linux 
to be executed. Furthermore, a bioinformatics analysis pipeline typically involves several 
different programs and databases and the output format of one program needs to be 
parsed to fit the input of the next one in the pipeline. If the requirements of 
computational skills were lowered, the number of people in the scientific community that 
could contribute to analyzing and interpreting metagenomic data would increase. With 
the above in mind, FANTOM, Functional ANnotation and Taxonomic analysis Of 
Metagenomes, was developed. FANTOM is a standalone tool that runs on Windows, OSX 
and Linux with a graphical user interphase to analyze quantitative metagenomic data in 
a functional and taxonomic content (Figure 14). The abundance data is easily integrated 
with hierarchical databases such as NCBI taxonomy and KEGG.  

FANTOM was implemented in Python and make use of some core scientific packages 
such as numpy. The graphical user interphase was implemented with wxPython. 
Installers are provided for the platforms, Windows, OSX and Linux which makes it easy 
to install and execute.  

 

Figure 14 Screenshot from the command panel of FANTOM. 

FANTOM needs two input files, an abundance file of metagenomic features, taxonomic 
or functional, and a sample metadata file. The abundance file should be a tab delimited 
file with identifiers such as NCBI Taxonomy IDs or KEGG KOs and the abundance 
information in the form of read counts. The metadata file should be a tab delimited file 
with the same identifiers as the samples in the abundance file and numerical or 
categorical variables. In the data import step, the user selects the type of data that 
should be imported and which database to use. FANTOM makes use of the hierarchical 
structure in databases such as NCBI Taxonomy and KEGG pathways. The abundance of 
a higher node in the hierarchy (e.g . Genera or pathways) is calculated by summing the 
abundance of all member nodes (e.g. species or KEGG KOs). An example is shown in 
Figure 15 where the input data is species abundance and these are summed to phyla and 
displayed in an area plot.   
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Figure 15 Area plot of phyla abundance in 13 gut metagenomes 

Statistical hypotheses tests can be performed between groups of samples defined in the 
metadata information about samples. Both parametric and non-parametric tests were 
included in the FANTOM and non-parametric tests are encouraged because 
metagenomic data typically do not follow common distributions. The software does also 
contain the possibility to correct obtained p-values for multiple testing with e.g. the 
Bonferroni or Benjamini-Hochberg methods. Data at varying hierarchical levels can be 
visualized in several different ways by area, bar and box plots. In summary, FANTOM is 
an easy to use downstream tool for metagenome data analysis with integration to 
databases for biological interpretation.  

3.2.2. Paper VI: MEDUSA and construction of a global gut microbial gene 
catalogue 

Modern DNA sequencing machines can produce hundred millions of sequence reads from 
a metagenome and annotation and characterization of such a dataset can be a daunting 
task. The analysis involves several steps, often performed sequentially, and includes 
data quality control, filtering contaminant reads (e.g. human) and comparison to a 
reference catalogue. The reference catalogue can be a set of sequenced genomes or a non-
redundant gene catalogue of genes assembled from metagenomes. The data size often 
requires that these tasks are performed on a computational cluster with parallel 
execution. To address the challenge of quantitative characterization of metagenomes, 
MEDUSA was developed to perform quality control, filtering and counting alignments to 
up to two databases in one computational stream. Furthermore, it includes scripts for 
handling downstream tasks and annotation to taxonomic and functional databases 
(Figure 16). MEDUSA was implemented in Python with the use of the package numpy 
and the standalone tools fastx (http://hannonlab.cshl.edu/fastx_toolkit/), bowtie2 
(Langmead and Salzberg, 2012) and GEM (Marco-Sola et al., 2012).  



36 
 

 

Figure 16 Overview of the MEDUSA pipeline.  Fastq sequence files are input data and 
can be compressed in various ways. MEDUSA aligns reads to a reference database and 
counts aligning reads. Count files can be merged into a count table and annotated to 
taxonomic and functional (KEGG KO) levels.  

MEDUSA was tested on 4 large metagenomic datasets including subjects from 3 
different continents (Huttenhower et al., 2012a; Karlsson et al., 2013; Qin et al., 2010; 
Qin et al., 2012). A global gut microbial gene catalogue was constructed from the 4 
studies by starting with assembled contigs, predicting genes on contigs with 
Metagenemark (Zhu et al., 2010). Predicted genes were clustered with Usearch (Edgar, 
2010) using the criteria 95% sequence identity and 90% coverage of the shorter sequence. 
Genes from each study were first clustered separately and later merged in a global gene 
catalogue containing 11 million genes. Each study showed a substantial number of 
unique genes while the number of genes found shared between all studies was 488,482 
(Figure 17). Importantly, the shared genes were abundant and attracted 38 ± 8% of the 
reads when mapped onto the gene catalogue and a similarly large part of reads mapped 
on to study-unique genes (36 ± 4%). Considering the smaller number of shared genes 
compared to study-unique genes, if normalized to the number of genes in each category, 
shared genes are highly abundant.  
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Figure 17  Venn diagram of gene distribution in the 4 studies included. A core of almost 
half a million genes was shared between all studies. The largest number of unique genes 
was found in the HMP study which was also the one with most samples and deepest 
sequencing.  

 

Reads from each of the 782 samples were subjected to quality control; human reads were 
filtered and mapped onto a catalogue of 1747 prokaryotic species genomes and the 
constructed gut microbial gene catalogue. Almost 98% of the reads passed the quality 
cutoff and of these, 75% were aligned to the gene catalogue while 39% were aligned to 
the species genome catalogue. The taxonomic profiles of the metagenomes were 
determined by analyzing the reads aligning to the species genome catalogue. The most 
abundant genus was Bacteroides but the abundance varied greatly within the samples 
(Figure 18). The abundance of Bacteroides was higher in HMP and Chinese samples 
compared to European samples. In two different reports Bacteroides abundance have 
been associated with a diet rich in animal protein and fat (David et al., 2013; Wu et al., 
2011). The abundance of genera from the Firmicutes varied across study populations and 
in general the Swedish and to some extent the Metahit population had more 
Faecalibacterium, Eubacterium, Clostridium and Dorea. The European populations also 
had a more diverse species richness assessed by the Shannon diversity index compared 
to HMP and Chinese samples.   
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Figure 18 Genus abundance in the 782 samples. Samples are ordered by increasing 
abundance of Bacteroides represents an increasing gradient. Color bar at the bottom 
shows the study origin of the sample, Light blue; Sweden, yellow; MetaHIT, red; HMP, 
green; China.  

The existence of a core gut microbiome at the taxonomic level have been debated and 
arguments for a core microbiome only at the functional gene level rather than at the 
taxonomic species level (Turnbaugh et al., 2009) or that there is a core of species (Qin et 
al., 2010; Tap et al., 2009) have been presented. The answer to this question is 
depending on how the core is defined as this is to some extent arbitrary. In this work, a 
core species is defined as being a species that has a relative abundance above 10-4 and 
being present in more than 50% of the studied individuals. The number of species 
present in at least 50% of the individuals is 116 and 71 are also present in 90% of the 
individuals (Figure 19). This suggests that there is a core also at the organismal or 
taxonomic level in this set of individuals from three different continents.  

 

 

Figure 19 Pan and core species. The core percentage means that the species was present 
in at least that fraction of the studied subjects.  
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Most core species belong to the genus Bacteroides with 20 representatives present in at 
least 50 % of the subjects (Table 2). Furthermore, genera in the Firmicutes such as 
Clostridium, Ruminococcus Eubacterium and Faecalibacterium are all clearly present in 
the core as well as some species from the Actinobacteria in the Bifidobacterium genus.  

Table 2 Origin and number of core species present in at least 50% of the subjects 

Genus name Number of 
species 

Genus name Number of 
species 

Bacteroides 20 unclassified butyrate 
producing bacteria 

1 

Clostridium 13 Butyrivibrio 1 
Prevotella 10 Capnocytophaga 1 
Ruminococcus 9 Clostridiales 1 
Eubacterium 8 Collinsella 1 
Lachnospiraceae 6 Eggerthella 1 
Faecalibacterium 4 Holdemania 1 
Alistipes 3 Marvinbryantia 1 
Bifidobacterium 3 Megasphaera 1 
Coprococcus 3 Odoribacter 1 
Roseburia 3 Oribacterium 1 
Blautia 2 Paraprevotella 1 
Coprobacillus 2 Parasutterella 1 
Dorea 2 Phascolarctobacterium 1 
Erysipelotrichaceae 2 Pseudoflavonifractor 1 
Escherichia 2 Ruminococcaceae 1 
Parabacteroides 2 Streptococcus 1 
Anaerostipes 1 Subdoligranulum 1 
Anaerotruncus 1 Tannerella 1 
Bilophila 1   
 

The richness of the gut microbiota was assessed by counting genes after normalization to 
11 million reads. A gene was counted as present if at least two reads mapped on to it. 
When the richness was compared for subjects from the 4 studies, it again appears that 
European samples have higher richness compared to Chinese and HMP samples (Figure 
20). Low richness of the microbiota has been reported to be associated with a number of 
diseases such as inflammatory bowel disease (Manichanh et al., 2006),  inflammation in 
elderly (Claesson et al., 2012) and obesity (Le Chatelier et al., 2013; Turnbaugh et al., 
2009). Furthermore, large differences in diversity are also seen between populations and 
lower diversity has been observed in subjects from America compared to Amerindians 
from Venezuela and Malawians (Yatsunenko et al., 2012). Although there are differences 
in diversity between individuals, there is a common core that is present in at least 50% 
of the individuals. The size of this core is 287,921 genes which indicated that a large 
portion of the genes carried by an individual is shared. This size of genes can be roughly 
compared to the species core of 116 species which carries 348,000 genes assuming that 
each species has 3000 genes on average. Interestingly, over 10 million genes are shared 
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by at least 2 individuals which indicates that even rare genes are shared by some 
individuals.  

 

Figure 20 Gene richness and pan and core genes. a) Gene richness in samples grouped 
by study. The number of genes were counted using 11 million reads from each sample. 
Swedish and MetaHIT samples have a higher gene richness compared to American and 
Chinese. b) The number of pan and core genes in the 4 studies are shown as a function 
of the number of subjects. The number of core genes present in at least 50% of the 
population is 287,921.  

 

3.3. Systems biology and metabolic modeling applied to the gut 
microbiota 

To increase the information gained from data generated in metagenomic studies, 
systems biology approaches and metabolic modeling can be applied. Metagenomics 
provides a part list of the components present and associated with different disease 
states or diets. However, to link metagenomic information with likely metabolic 
consequences of a particular state and how the parts interact, a modeling approach is 
needed. A model in this context takes an input and calculates an output under a number 
of assumptions. The type of model used in this work is genome-scale metabolic models. 
The motivation use these models and their historic use in relation to human health are 
outlined in Paper VII and an example of their application to the gut microbiota is 
presented in Paper VIII.  

 

3.3.1. Paper VII: Genome-scale metabolic models for human health and the gut 
microbiota.  

Genome-scale metabolic models have served as a very useful tool for studying the 
interactions between human metabolism and human related microbes. In Paper VII, the 
field of GEM modeling of human related microbes was reviewed and no reconstruction of 
microbial species from the gut microbiota could be found. Furthermore, the previous 
literature of modeling more than one species was very limited. With this background, 
ideas for a framework for modeling the human gut microbiota were presented (Figure 
21). Importantly, GEMs can be used to generate hypotheses that could be tested in an 
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experimental setting. An example could be to evaluate the production of butyrate from a 
series of different consortia of microbes. These hypotheses could be quickly tested in 
silico and the most promising could then be tested experimentally.  

 

Figure 21 Framework for modeling the gut microibiota using GEMs.  1) GEMs can be 
directly used for simulations using FBA to predict metabolic fluxes under different 
growth conditions and interspecies metabolite exchanges. 2) GEMs constitute excellent 
scaffolds for mapping transcriptomic and metabolomics data and inferring a metabolic 
context. 3) Metagenomics data of species abundance can be used in physiological 
simulations of the intestinal tract to infer metabolic fluxes.  

Initial modeling studies using GEMs must be validated with experimental data. Paper 
VII identified a set of three species, Bacteroides thetaiotaomicron, Eubacterium rectale 
and Methanobrevibacter smithii, as possible species to model in a gut environment with 
valuable data for validation in the literature.  

3.3.2. Paper VIII: Metabolic modeling of three bacteria in the gut. 
Metabolism of SCFAs is particularly important in the gut microbiota, both as a 
necessary byproduct of microbial fermentation and as an important substrate for 
colonocytes and other host cells. In Paper VIII, three important species in the human gut 
were reconstructed, Bacteroides thetaiotaomicron (iBth1201), Eubacterium rectale 
(iEre400) and Methanobrevibacter smithii (iMsi385). B. thetaiotaomicron is a well-
studied representative from the Bacteroidetes phyla and one of the first gut bacteria to 
be sequenced (Xu et al., 2003). It contains a large repertoire of polysaccharide degrading 
enzymes and its main byproduct during fermentation is acetate and propionate 
(Mahowald et al., 2009). E. rectale is a member of the Firmicutes phyla and a known 
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butyrate producer while M. smithii is and archaea that plays a special and important 
role in the gut by disposing hydrogen and formate and produces methane.  

The RAVEN toolbox was used for reconstruction of the three species (Agren et al., 2013). 
Manually constructed GEMs of well characterized species (Feist et al., 2007; Heinemann 
et al., 2005; Satish Kumar et al., 2011) were used as templates for reconstruction, 
manual curation was performed and reactions were also added from KEGG (Kanehisa et 
al., 2004). Each GEM was validated individually with available experimental data and 
metabolic task such as amino acid production and substrate utilization were evaluated 
with the RAVEN toolbox. 

The GEMs were evaluated in and in vivo setting and compared with well-characterized 
germ-free mice colonized with combinations of the studied microbes. In this context, the 
metabolic fluxes of substrate uptake and byproduct secretion are predicted from the 
abundance information provided in the experiments. Metabolic fluxes are then compared 
to experimental observations. An important assumption in these simulations is that each 
microbe uses a minimal amount of substrate for a given production of its biomass which 
is equivalent to maximizing the biomass production for a given amount of substrate.  

B. thetaiotaomicron simulations were compared to experimental results in mono-
colonized mice and are shown in Figure 22. Acetate and propionate production could be 
compared and were in agreement with experimental results (Mahowald et al., 2009).  E. 
rectale simulations were also compared to results in mono-colonized mice and produced 
butyrate, CO2 and H2. Again, results were in agreement with experimental observations 
(Mahowald et al., 2009). M smithii was also mono-colonized in germ free mice and 
simulations were compared to experimental values (data shown in Paper VIII). The main 
produced byproduct is methane gas for which the production in mice is experimentally 
difficult to measure.  

The most interesting aspect of this type of modeling is to simulate how two or more 
species interact with each other. In order to simulate the interaction, the two models 
were merged into a common stoichiometric matrix and the extracellular compartment 
was merged to a common compartment. B. thetaiotaomicron and E. rectale were 
simulated together in the mouse gut and results compared to experimental values. The 
main exchange between the two species is acetate that is produced by B. 
thetaiotaomicron and taken up by E. rectale. Also here, the biomass production rate was 
set to its experimental value and the substrate uptake rate was minimized. The 
predicted metabolite concentrations and the deviations to the experimental values for 
acetate, propionate and butyrate were 0.7 (14%), 1.2 (40%) and 0.07 (30%) mmol/g Cecal 
content, respectively (Figure 22). The errors in the prediction values compared to 
experimental data are comparable to the measurement error in the experiments. Values 
for the biomass content are used in the simulations and do also contain error to which 
the error in SCFAs are directly proportional to. The predictions presented here are thus 
as good as the accuracy and quality of the input data allows.    
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Figure 22 Simulation of mono and co-colonizations in germ-free mice. (a) 
Monocolonization of Bacteroides thetaiotaomicron (b) Mono-colonization of Eubacterium 
rectale (c) Co-colonization of Bacteroides thetaiotaomicron and Eubacterium rectale. 

a

b Acetate absorption

Propionate absorption

Predicted acetate

Predicted propionate

Predicted H2

Predicted CO2

Experimental biomass

Experimental acetate

Experimental propionate

Predicted Glucan

Experimental Glucan

Predicted Succinate

Predicted butyrate

Experimental butyrate

E. rectale

Glucan

Acetate

Propionate

Butyrate

CO2
H2

B. theta

0
2
4
6
8

10
12

0
0.001
0.002

0

5

10

15

F/D (μmol/gr cecal)

0
2
4
6
8

10
12

0

50

Glucan0

10

20

0E+0
1E-4
2E-4
3E-4
4E-4

0

2

4

6

0

5

10

E. rectale

F/D (μmol/gr cecal)

0
5

10
15

0
5

10
15
20
25

B. theta

0

0.005
0

20

40

0
10
20
30

F/D (μmol/gr cecal)
F/D (μmol/gr cecal)

F/
D

 (μ
m

ol
/g

r 
ce

ca
l)

F/
D

 (μ
m

ol
/g

r 
ce

ca
l)

F/
D

 (μ
m

ol
/g

r 
ce

ca
l)

F/D (μmol/gr cecal)

c



44 
 

GEMs are excellent tool for integrative analysis and interpretation of transcriptomic 
data in a metabolic context. In this case study, transcriptional profiles of E. rectale and 
B. thetaiotaomicron in a co-colonization were compared to mono-colonization of the two. 
By using the reporter subnetworks algorithm (Patil and Nielsen, 2005), a number of 
metabolic subnetworks were identified that represent a concerted metabolic response 
upon co-colonization (Figure 23). E. rectale responds to co-colonization with B. 
thetaiotaomicron by down-regulation of most of its polysaccharide utilizing enzymes and 
up-regulating several genes for amino acid biosynthesis and cell wall production. A 
number of amino acid transporters were also up-regulated indicating that E. rectale 
shifts substrate utilization strategy from carbohydrates to amino acids. B. 
thetaiotaomicron responds to the presence of E. rectale by up-regulating the expression 
of poly- and mono-saccharide utilization genes. B. thetaiotaomicron broadens the variety 
of polysaccharides used, also by increased expression of enzymes for degradation of host 
glycans.  
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Figure 23 Reporter subnetworks for the transcriptional response of co-colonization. (a) 
Transcriptional changes in E. rectale when co-colonized with B. thetaiotaomicron are 
mainly in down regulation of saccharide metabolizing enzymes and upregulation of 
amino acid metabolism. (b) Transcriptional changes in B. thetaiotaomicron when co-
colonized with E. rectale are mainly up-regulation of polysaccharide utilization. Red are 
up-regulated while green are down-regulated reactions. 
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4. Conclusions and future perspectives 
This thesis aims to address the three questions that were introduced in the introduction. 
The three questions were:  

• How is the human gut metagenome associated with metabolic diseases?  
• Can bioinformatics tools for analyzing metagenomic data be advanced and made 

more easily accessible? 
• Can metabolic modeling be used for studying basic metabolism in the human gut? 

In Paper I, we observed that the gut metagenome was altered in patients that have had 
an atherosclerotic event. Control subjects had higher levels of Roseburia and 
Eubacterium, both genera are known to contain species that are butyrate producers. 
Furthermore, the key gene for butyrate production was strongly negatively correlated 
with the inflammatory marker hsCRP. Control subjects also had higher plasma levels of 
the antioxidant β-carotene and genes for the synthesis of this compound in their 
metagenomes. Patients had higher levels of genes for the synthesis of peptidoglycan and 
higher abundance of species from the Collinsella genus. Taken together, we have found 
clear differences in the gut metagenome of patients with symptomatic atherosclerosis 
compared to controls.  

In Paper II, we studied a larger cohort of subjects with diabetic, impaired and normal 
glucose control. With the higher number of samples in this study, it is possible to group 
genes into MGCs based on their co-occurrence across individuals. This made it possible 
to construct taxonomic markers based on groups of genes likely from the same species of 
which some might not be sequenced yet. By comparing species and MGCs abundance 
between T2D and NGT individuals, again species which are known butyrate producers 
such as those from Roseburia had higher abundance in controls. T2D individuals had 
higher levels of Lactobacillus and C. clostridioforme. In Paper II we also demonstrated 
that the gut metagenome can be used for accurately classifying diabetic status which is a 
step towards identifying individuals at risk of developing diabetes. Indeed, the model 
identified IGT individuals that also had higher triglyceride and C-peptide levels which 
are risk factors for metabolic disease.  

Taken together, Paper I and Paper II demonstrate that metabolic diseases are associated 
with deviations from a healthy gut microbiota. The healthy state appears to be one rich 
in butyrate producing bacteria as has been seen also in obesity and inflammatory bowel 
disease. However, a disease associated microbiota might have deviated in several 
different directions. The comparison of gut metagenomes from 4 different studies with 
individuals from 3 continents in Paper VI highlights large differences between 
populations. Different diets are likely to play an important role in shaping the 
microbiota and could be the reason for regional variation. Paper III demonstrated large 
long term effects of bariatric surgery on the gut microbiota with an expansion of 
Escherichia and altered abundance of many gene functions. VBG subjects show similar 
deviations from the obese state as do RYGB although to a lesser extent. Paper IV 
reviews the current knowledge about the gut microbiota and metabolic diseases. 



Conclusions and future perspectives  

47 
 

Two software tools for metagenomic data analysis and interpretation were developed. 
Paper VI describes MEDUSA that can be used for efficient pre-processing and 
annotation of metagenomic reads. Tools for handling the data tables and annotation to 
KEGG and NCBI taxonomy are provided. MEDUSA was tested by analyzing 782 human 
gut metagenomes and a global human gut microbial gene catalogue is presented. 
Downstream processing of quantitative metagenomic features together with clinical data 
can be analyzed in the program FANTOM described in Paper V. FANTOM has a 
graphical user interphase that should be easy to use for researchers who are not familiar 
with computer programming. FANTOM also has tools for analyzing data at different 
taxonomic ranks and functional pathways.  

Paper VII outlines a systems biology approach of modeling the metabolism of the gut 
microbiota and reviewed the use of genome scale metabolic models in human health and 
disease. In Paper VIII, the modeling approach is implemented. Genome-scale metabolic 
models of three different species in the human gut, B. thetaiotaomicron, E. rectale and 
M. smithii, with diverse metabolic functions were reconstructed. The models were 
validated individually and then merged to interact with each other. Several metabolites 
were cross-feeding between the 3 models and results were compared to that of mice 
colonized with the 3 bacteria with good agreement. The models are excellent tools for 
interpreting transcriptomic data in metabolic context and such use demonstrated how B. 
thetaiotaomicron and E. rectale adapts to the presence of each other in the mouse gut.  

4.1. Future perspectives 
Several different associations between the gut microbiota and obesity have been 
proposed, sometimes these were conflicting. Work on larger cohorts using deep 
sequencing will likely clear some of the present uncertainties. It is clear that broad 
taxonomic characterization is not enough but that detailed characterization of the 
microbiota is needed to discern relevant associations between human health and the gut 
microbiota.  

In order for findings of the association between the gut microbiota and metabolic 
diseases to be clinically relevant and used, a number of things need to be established. 
The associations between the gut microbiota and metabolic diseases have so far mainly 
been performed on case-control studies. This is of course an important first step to 
establish if there is a correlation but does not provide evidence about causal 
relationships. Prospective studies where samples are collected some time before a 
disease develops are useful for developing biomarkers and risk factors in the gut 
microbiota for predicting disease development. The final goal is intervention studies, 
possibly using findings from case-control and prospective studies, to alter a disease 
related microbiota to a healthy state. An interventional study using fecal 
transplantation has been used to improve glucose metabolism in patients with metabolic 
syndrome (Vrieze et al., 2012). However, transfer of whole microbiota carries the risk of 
also transferring pathogens, some of which are unknown or undetectable with present 
methods, to recipients. Crucial species delivered as a probiotic cocktail that are tested to 
be safe and evaluated in a randomized controlled trial is a better alternative. Prebiotics, 
non-digestible food ingredients that stimulate growth of beneficial bacteria, could be an 
alternative to promote a healthier microbiota. I believe that the field is moving in this 
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direction and that there is enough evidence that merits further investigation into the 
contribution of the gut microbiota to metabolic diseases and possible interventions. 

Several tool for advanced bioinformatics analyses of metagenomic data have been 
released which is important to make metagenomic data analyses available to a wider 
range of scientist. Compared to RNAseq and genome-wide association studies, 
metagenomic studies do not use standardized bioinformatics and data analysis methods 
to the same extent. This is partly due to that the metagenomic field is young and our 
“other genome” has not been studied to the same extent as the human genome. 
Additionally, the “other genome” is considerably less conserved between individuals 
compared to our human genomes and is thus a moving target. For this reason, the gene 
catalogues will likely have to be updated also in the future.  

Genome-scale metabolic models are well suited for modeling of microbial metabolism in 
the human gut. Modeling approaches are promising for enriching metagenomic data by 
predicting metabolic outcomes but there are some hurdles to overcome. Accurate 
reconstruction of a metabolic model is time consuming and requires manual curation of a 
computer generated draft model and this process needs to be accelerated if all main 
species in the human gut should be reconstructed. Modeling could be used for aiding the 
design of probiotics and prebiotics. Considering the complexity of degradation of dietary 
fibers into sugar monomers and the interspecies feeding that goes on in this process, it is 
not trivial at all to predict the outcome. Detailed metabolic modeling of fiber 
decomposition by key species is likely very useful in understanding experimental results 
and generating new hypotheses.  

It has been very exciting to work in the rapidly developing field of the gut metagenome 
and I expect that it will continue in the same pace in the years to come.  
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