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Abstract 

A large number of microbes with different strain types occupy the human gut. These gut inhabitant 

microbes have key roles in decomposition of indigestible dietary macronutrients before they are 

metabolised by the host. The gut microbiome has a clear effect on human health and perturbations 

in its diversity may lead to the development of disorders through changes in metabolic functions. 

To date, different studies have shown the association of the gut microbiome with metabolic 

disorders such as obesity, type2 diabetes and certain cancers. It has also been shown that there is a 

complex interaction between microbe-microbe, host-microbe and microbe-diet, and elucidation of 

the mechanisms behind these interactions and associations remains a challenge. Due to the extreme 

complexity of cellular metabolism, mathematical models may be employed for deciphering the role 

of its individual elements and may thereby assist in providing an increased understanding of these 

interactions. The emerging research field of systems biology can integrate different high-

throughput data, in this case metagenomics and metatranscriptomics, through the use of 

mathematical models and thus provide a holistic interpretation for this complex system. In this 

context, genome-scale metabolic modeling has been applied to gain increased knowledge in 

important biotechnology applications.  

 

This thesis presents approaches to facilitate understanding of the causalities and go beyond the 

association analysis by considering the interactions between microbiome, host and diet. Using 

genome-scale metabolic models (GEMs), we investigated the contribution of key species in the 

overall metabolism of the gut microbiome. We developed methods and generated stand-alone 

software to apply for different case studies on modeling of gut microbiome and finally addressed 

relevant biological questions. First, GEMs for three bacteria being representatives of dominant 

phyla in the human gut microbiome were reconstructed. This modeling approach allowed us to 

establish effective resources for understanding the microbe interactions in the gut. Increasing the 

number of relevant GEMs representing all key microbes in the human gut resulted in more 

complexity and therefore we developed the CASINO toolbox, a comprehensive software platform 

for the analysis of microbial communities. CASINO was validated based on in-vitro studies and 

thereafter applied to human studies that showed its capability to predict the phenotype of 

individuals based on their dietary pattern and gut microbes’ abundances. Finally, the application of 

CASINO was extended and used for modeling of the interactions between gut microbiota and host 

metabolism. The overall metabolic differences between germ-free and conventionally raised mice 

were revealed through the use of CASINO. In conclusion, this thesis provides a new approach to 

human gut analysis by using valuable resources (GEMs) and novel methods (CASINO). As such 

it contributes to advancing the role of metabolic modeling in human health and designing new 

clinical interventions.  

Keywords: Gut microbiome; genome-scale metabolic model; obesity; diabetes; gene richness; 

CASINO; flux balance analysis, network topology; complexity; systems biology; meta’omics 
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He doesn't play for the money he wins 
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1. Introduction 
The first evidence for the existence of microbes in the mouth and faeces of human was observed 

by the end of the seventeen century. From that time till now, it has been realised that the human 

body contains a vast number of microbes, colonised in different parts of the body such as the skin, 

oral cavity, gastrointestinal tract and urogenital tract. Extensive computational methods and 

experimental instrument developments also took place, particularly for sequence technology. Since 

then, several software programmes have been designed to overcome challenges to optimum 

genome assembly and annotation. For microbiome studies, the major goal to achieve is a 

comprehensive understanding of the microbial consortia, their interaction within the community, 

and their cross-talk with their environments. Top-down approaches such as metagenomics were to 

some extent made successful due to having meaningful insight into the microbial community, but 

were unable to assess the individual members. This is where the mathematical modeling and 

particularly genome-scale metabolic model as the common denominator of systems biology can be 

applied. The history of systems biology of single organisms shows us the effectiveness of this 

approach in metabolic engineering and studying human health and disease. After I worked on 

metabolic modeling of different organisms at the beginning of my PhD, I focused mainly on 

integrating the experience of single organism modeling into community modeling.  Within this, I 

tried to address three questions in the field of the gut microbiome as an important research area for 

human health and diseases: 

-Can metabolic modeling be applied on human gut microbiota to describe the interactions 

between individuals? 

-Can metabolic modeling be applied to test perturbations and pinpoint the changes of 

individual bacteria and their metabolism? 

-Can GEMs be used to better understand the interactions of microbiota with their host and 

changes in their metabolism? 

GEMs allowed us to simulate the gut microbiome ecosystem. We obtained information about the 

functional role of different species in this complex ecosystem and evaluated the role of different 

species in silico. We mathematically formalised two different scenarios to understand the 

interactions of the bacteria in the gut ecosystem. In the first case, the composition of the diet and 

the species abundances in the microbiota is known and constituted the input for the model whereas 

in the second case, we predicted the abundances of the different species in the microbiota as a 

function of the diet. We further demonstrated that the integration of the topological information of 

GEMs with diet compositions, genomic and transcriptomic data, as well as community metabolic 

modeling provided a mechanistic interpretation of the statistical findings revealed by 

metagenomics. 

The use of the GEM approach would facilitate the testing of a different hypothesis. The effects of 

different diets were simulated, the interactions between the microbes and host in response to the 

diet were studied and the contribution of each bacteria to the faecal metabolite profiling was 

quantified. The knowledge harvested from our simulations can be used for rational designing of 

prebiotics. Our approach can also be used for identifying beneficial bacteria for human health and 

can be used for the treatment of metabolic disorders that are associated with the gut microbiota. 

For instance, malnourished individuals who lack digestive enzymes due to the absence of certain 

microbes in their gut can be determined and appropriate probiotics can be designed specific to these 
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subjects. Metabolic modeling can be employed to understand the effect of the deletion or over-

expression of individual genes or gene sets on human health in different clinical conditions by 

evaluating the abundance of species and the level of metabolites. Animal models can also be 

applied to examine the link between the gut microbiome and human host. These models can be a 

great platform for investigating different hypotheses through changing different parameters, 

whereas this is not practical in human studies. 

To better understand the metabolic changes in the host due to microbiome activity, germ-free (GF) 

and conventionally-raised (CONV-R) mice are a great tool. Mice can be raised with different diets 

and then euthanised to get samples from the host that can be used for high-throughput analysis. 

Then different analyses can be performed on the data and GEMs can be applied to provide network 

topology and a study of network-dependent analyses, or used for predicting the diet consumption 

of gut microbes and the host, and their interactions.  

This thesis describes the concept of metabolic modeling for simplified community. Then it defines 

two tools for unravelling the interactions of microbe-microbe in a more complex community and 

the possibility of testing different diet patterns on them. At the final step, through using GEMs and 

high-throughput data, the metabolic changes between CONV-R and GF mice are revealed as a 

platform for understanding the microbe-host interactions and their impact on different metabolic 

disorders.   
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2.  Background 

2.1. The human gut microbiome 

Large numbers of microorganisms inhabit various sites in the human body. This collective set of 

microorganisms in and on the human body is generally referred to as a microbiota and their 

collective genome is called the microbiome. Microorganisms inhabiting our body include bacteria, 

eukaryotes and viruses, and can be located on the skin, in the vagina, oral cavity and intestine 

(Huttenhower et al., 2012). The number of somatic cells in the human body is 1013, while the 

number of microorganisms that live in and on the human body is 10 times larger. Moreover, the 

gut metagenome is two orders of magnitudes greater than the human genome.  

The gastrointestinal tract accommodates a large part of the human microbiota and 50% of the faecal 

matter consists of bacteria with an overall weight of 1.5 kg (Zhao, 2013), similar to the weight of 

the adult human brain. The density of cells changes in different locations of the gut, such as 1011-

1012 cells per gram of luminal content which is aggregated in the distal colon whereas this is 103 to 

108 cells in the small intestine (Backhed et al., 2005). The bacterial taxonomic diversity varies in 

accordance with human gastrointestinal sites. Two major bacterial phyla, Firmicutes and 

Bacteroides inhabit the gut (Qin et al., 2010) . The Gram positive Firmicutes phylum contains 

different classes. Clostridia with clusters of IV (Clostridium leptum group), IX and XIVa 

(Clostridium coccoides group) are the most abundant classes of Firmicutes (Collins et al., 1994). 

Clusters IV, IX and XIVa include Clostridium, Eubacterium, Roseburia and Ruminococcus as the 

main genera, so that two butyrate-producing bacteria Eubacterium rectale and the Roseburia 

species belong to cluster Clostridium XIVa, comprising 5% to 10% of the total microbiota (Aminov 

et al., 2006; Scott et al., 2006). The gram negative Bacteroides phylum has been studied 

systematically together with the Prevotella. There are also less abundant phyla dominating the gut 

such as Actinobacteria, Proteobacteria and Verrucomicobia. The Actinobacteria includes two 

important genera, Bifidobacterium and Collinsella. Akkermansia muciniphila (Derrien et al., 2004), 

the known bacteria for mucus degradation belongs to recently found Verrucomicobia phyla. There 

are also important species belong to archaea in the gut microbiota like Methanobrevibacter smithii, 

which belongs to the Euryachaeota phyla (Gill et al., 2006).  

The diversity of microbiota is highly variable between the subjects. Shaping of the gut microbiota 

composition can be driven through complex interactions between age, geography, diet, lifestyle, 

diseases and drug usage (Biagi et al., 2010; Claesson et al., 2012; Dethlefsen and Relman, 2011). 

The diversity and composition of the gut microbiota is mainly measured from faecal samples and 

the structures of these microbial communities change along the gastrointestinal tract. The spatial 

heterogeneity and co-occurrence patterns of microbiota phylum along the intestinal tract have been 

studied (Zhang et al., 2014). The faecal samples are still the most common sources for gaining 

knowledge about the gut microbiota due to difficulties in obtaining samples from other parts of the 

intestinal tract. Despite the extensive research on the inter-subject variation of gut microbiota, the 

stability of this community over time has been disregarded. However, a few studies have shown 

that the microbiota composition between two time points for the same subject is very similar 

compared to other subjects (Faith et al., 2013). These colonised microbes in the human gut have 

dynamic and beneficial functions for the human body. Through their symbiotic relationships, the 

indigestible part of diet by human cells is assimilated (Backhed et al., 2005). Moreover, the gut 

microbiota affects the immune system by regulating immune homeostasis and autoimmunity and 

maintains the stability of the immune system by providing resistance against pathogens (Wu and 

Wu, 2012).  
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2.1.1.  Meta’omics of the gut microbiota  

In the last two decades, these complex microbial communities have been studied through culture 

independent experiments. These approaches proved the diversity and functionality of these 

communities mainly through low-throughput sequencing, 16S rRNA gene. Exponential cost 

reduction of high-throughput sequencing resulted in more genome-wide approaches such as 

metagenomics and metatranscriptomics to explore the microbial communities. These meta’omics 

tools extract the molecular details of thousands of microbes and expose the host and microbe 

metabolism and their interactions at a systems level. Meta’omics approaches mainly aim to depict 

the uncultured microbial community in the form of genes, transcripts, proteins, metabolites and 

their variations. The metagenomics refers to DNA sequencing of the whole community, while the 

metatranscriptomics is their cDNA sequencing. Metagenomics and metatranscriptomics are used 

to gain access to genome composition and diversity in the microbial community through targeted 

rRNA sequencing and whole metagenome shotgun (WMS) sequencing. WMS sequencing is 

followed by isolation of DNA/RNA from the community. After library construction, the short-read 

sequencing on the mixture of genomes or transcripts is performed. These millions of short reads 

are either assembled for gene prediction or used for recognising the presence of organisms and 

their possible metabolic functions. The collection, analysis and mining of this massive data remains 

computationally challenging. Bioinformatics tools have also advanced following the evolution of 

sequencing technology. All generated pipelines start with filtering a low quality sequence and the 

removal of contaminating genomes, and this is then followed by sequence assembly, gene 

prediction and species diversity. A catalogue of reference genes plays a key role in the analysis of 

the human gut microbiome. However, most gut metagenome studies have been done based on 

single cohorts or reference genomes, which causes limitations for functional metagenomics 

analyses (Huttenhower et al., 2012; Qin et al., 2010). Recently, an integrated catalogue of reference 

genes in the human gut microbiome has been constructed to overcome this issue (Li et al., 2014). 

This catalogue is established by using published studies from MetHIT (760 European samples), 

HMP (139 American samples), a Chinese cohort (368 samples) as well as the genome of gut-related 

or already sequenced bacteria and archaea. This has resulted in a non-redundant reference 

catalogue, comprising 9,879,896 genes. Besides the metagenomics analysis, the integrated 

catalogue also enables the quantitative characterisation other meta’omics data. Although 

metagenomics is becoming the common tool and study for the human gut microbiome, 

metatranscriptomics has become more common for profiling the expressed functions and 

regulations in the community (Ridaura et al., 2013). Since isolating the microbial community with 

high quality and quantity is challenging, there are few gene expression analyses of microbial 

communities in association with the host (Byrd and Segre, 2015). These difficulties in isolation are 

a result of few microbial mRNA in total microbial RNA as well as the presence of host nucleotides.  

In the later step, the metagenomics data are used for functional annotation and metabolic model 

reconstruction. The easy way is to align the reads with gene catalogues and directly determine the 

functions. The functions can also be inferred through aligning reads to assembled contigs or genes. 

This later step leads to the de novo assembly of metagenomics reads. The function of metagenomic 

genes are linked to databases such as KEGG (Kanehisa et al., 2004), NCBI 

(www.ncbi.nlm.nih.gov) and COG (Tatusov et al., 2003). The KEGG database is composed of 

many microbial genomes with links between their genes and functions. Since the majority focus of 

KEGG is on metabolism, it makes it a great tool for metabolic model reconstruction.  
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2.1.2.  Metabolism by the gut microbiota 

The colon was mainly assumed as the loading space for undigested food, but now different 

microbial activities based on diet consumption and metabolic formation have been studied in this 

organ. Amino acids and xenobiotic metabolism, vitamin biosynthesis, microbial regulation of bile-

acid metabolism and microbial metabolism of choline are some of the examples of microbial 

metabolic activities (Gill et al., 2006).  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Schematic representation of variations of gut microbiota composition and concentration along the 

intestinal tract. As well the conversion of dietary carbohydrates through microbes’ anaerobic fermentation and 

syntrophy between the carbohydrate degraders and other gut microbial members. Adapted from (Kovatcheva-Datchary 

et al., 2013). 

Various complex carbohydrates including resistance starch, fibres with plant origin, non-starch 

polysaccharides and host driven glycans are not digestible by host enzymes (Backhed et al., 2005). 

These non-digestible foods are not digested in the small intestine and moved over the large intestine 

with a complex microbial community (Ouwehand et al., 2005). In the presence of microbes, these 

foods are anaerobically fermented. This degradation of various complex compounds requires the 

collection of hydrolytic enzymes that are provided by the microbial community. The carbohydrate 

digestion occurs through metabolic cross-feeding and different levels of conversion in microbiota. 

Capturing this information about which microbe is involved in the degradation of specific 

carbohydrates is missing and difficult to extract from metagenomics data. It is known that the 

indigestible dietary carbohydrates are degraded into many poly-saccharides and provide a substrate 

for the colonic microbiota (Rossi et al., 2005; Samuel and Gordon, 2006). The conversion of poly-

saccharides to oligo-saccharide occurs via different classes of microbial activities which many 

bacteria utilised and depend on. There are recent studies, which show that the first level of 
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breakdown of complex indigestible carbohydrates is established with a few microbes, such as 

species in the Bacteroides and Ruminococcus genus (Flint et al., 2008; Jindou et al., 2008).  

The main products from the microbial fermentation of these substrates are different gases including 

hydrogen, carbon dioxide and methane. Moreover, short chain fatty acids (SCFA) (butyrate, 

propionate and acetate) are the end products of this fermentation and they have significant impacts 

on host physiology. The concentration of SCFAs varies between different sites in the colon and 

SCFA measurements showed that their concentration drops from proximal to distal since a 

significant portion of SCFAs are absorbed by the proximal and 5% to 10% is transferred to the end 

part of colon (Cummings and Englyst, 1987; Macfarlane et al., 1992; Wong et al., 2006). SCFAs 

have different benefits for the human body by decreasing the luminal PH, increasing the microbial 

biomass, the beneficial bacteria population as well as mucus production and eventually shaping the 

peripheral metabolism.  

Among the SCFAs, butyrate has a key role as an energy source for colonic epithelium which is the 

5% to 10% of total energy needed by a healthy human body (Donohoe et al., 2011). Studies have 

shown that absorbed butyrate inhibits histone deacetylase, which stimulates the proliferation of 

colorectal cancer cells (Davie, 2003; Hamer et al., 2008). Different metabolic pathways can 

synthesise butyrate. Major butyrate producing bacteria (e.g. Clostridium cluster XIVa) ferment 

SCFAs through a CoA-transferase pathway whereas Eubacterium Hallii utilise lactate (Duncan et 

al., 2004; Louis et al., 2004). Propionate is a preferred substrate for liver gluconeogenesis and 

regulation of cholesterol synthesis and it has a protective role against hepatic cancer and relevant 

cancers that metastasise in the liver (Chambers et al., 2002; Comalada et al., 2006). The 

fermentation of propionate occurs in three routes; succinate decarboxylase, acrylate and 

propanediol pathways. The relevant examples are species from Bacteroides, Clostridium cluster 

IX and Roseburia inulinivorans. Acetate is a required substrate for liver lipogenesis and cholesterol 

synthesis while it stimulates the colonic blood flow and also has a protective role against hepatic 

cancer (Chambers et al., 2002; Scheppach, 1994). In addition, metabolites like succinate and lactate 

are produced by microbial fermentation. The list of important metabolites and contributed gut 

microbes within their functions were summarised in table 1. 

Moving from the proximal colon towards the distal colon, the level of dietary carbohydrates is 

decreased and protein becomes the available source for microbes. Hence, the human colon has been 

reported as the place for protein turnover (Macfarlane et al., 1986). Possibly due to the existence 

of branched chain fatty acids, e.g. isobutyrate, isovalerate and 2-methylbutyrate, and other toxic 

compounds as one of the end products of protein fermentation in the distal section, the risk for the 

occurrence of colon cancer is increased (Bingham et al., 1996; Cummings et al., 1979). It has been 

shown than colon cancer development has been positively correlated to protein fermentation and 

the distal part of the colon has a severe impact on cancer progression (Muir et al., 2004). The 

hydrogen gas as one of the microbial fermentation is diminished through utilisation of colonic 

methanogens. By this process, the hydrogen gas is oxidised and methane gas is released. 

Methanbrevibacter smithii is the well-known archaeon for such conversion in the human 

microbiota and it has a key role in overall gut metabolism despite its low abundance (Gill et al., 

2006; Salonen et al., 2010). The left over hydrogen gas is absorbed into the blood and finally 

excreted from the body through the lungs. Moreover, in those cases with availability of sulphate 

and mucins in the lumen, the hydrogen gas can be oxidised to hydrogen sulphite through sulphate-

reducing bacteria (Christl et al., 1992; Gibson et al., 1988). 
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2.1.3.  Factors affecting the gut microbiota composition 

The composition of gut microbiota may alter due to different factors, such as dietary pattern, 

environmental factors, age, drugs and antibiotics as well as host genetics. The host is one of the 

influencing factors that can have a strong impact on the distribution of the microbiota along the 

gastrointestinal (GI) tract. This occurs through changes in PH, host-secreted metabolites and other 

physiochemical parameters. Hence, the densities of bacterial cells in the stomach, small intestine 

and distal part of the colon can vary from 104  (per ml of digesta) to 108  to 1012 (per gram of stool), 

respectively (Figure 1) . The relative low abundances of microbes in the upper part of the GI can 

affect the host metabolism via acid secretion in the stomach, pancreatic enzymes and bile acid 

secretion in the small intestine. Moreover, different distributions of microbiotas have been 

correlated with different compartments along the GI tract. This observation can be associated with 

the epithelial cells covered by mucus and nutrient availability (Eckburg et al., 2005; Frank et al., 

2007). While in the stomach the most abundant classes of bacteria are Lactobacillacea, 

Veilonellaceae and Helicobacterceae, the PH varies between 1 and 4.4. In the small intestine, the 

composition changes to Bacillaceae and Streptococcaceae. In the large intestinal lumen, the 

abundant classes are Bacteroidaceae, Clostridium and Bifidobacterium, while in the epithelial 

surface of the large intestine, these are Clostridium, Lactobacillaceae, Enterococcaceae. The PH 

in the intestines varies from 5.5 to 7 (Figure 1).   
 

The other factor that may play a key role in changing the composition of gut microbiotas is the 

diet. The substrates available for microbial fermentation in the human colon can be categorised as 

dietary protein, resistance starch, non-starch polysaccharides, unabsorbed sugars and 

oligosaccharides. Beside these, bile, urea, peptides and mucus are the other available substrates for 

the microbial fermentation (Hughes et al., 2000; Scott et al., 2013). Around 10 to 60 grams of 

dietary carbohydrates reach the colon on a daily basis, which are mainly fermented in the proximal 

location. The amount of dietary proteins reaching the colon varies between 12 to 18 g/day. Figure 

1 shows the different substrate availability for human colonic fermentation. This availability of 

nutrients in different regions influences the distribution of the microbiota along the colon. This has 

been studied in colonoscopy of colonic mucosa for 11 healthy subjects (Zhang et al., 2014). The 

samples have been taken from seven regions of the colon where 16S rRNA gene sequencing 

showed the composition of the bacterial phyla changes along the colon. In another case, the 

metagenomics data have shown the positive correlation between long-term diet and microbiota 

composition. The metagenomics data generated for faecal samples of American adults have been 

clearly clustered together with the metagenomics data of European faecal samples (De Filippo et 

al., 2010). The dietary pattern for both groups is enriched in protein. In a similar case, 

metagenomics data of Malawians and Africans have been clustered together, while it is known that 

their diet is rich in plant polysaccharides (Yatsunenko et al., 2012). The seeded microbiota in 

infants is significantly dependent on feeding. The predominant bacteria in breast-fed infants are 

Bifidobacteria, Bacteroides, Clostridia and facultative anaerobes, while the formula-fed infants 

have a higher abundance of pathogenic species such as Clostridium difficile(Wall et al., 2009). 

Before the age of 2 years, the composition of the gut microbiota is simple. At the first few months, 

Bifidobacteria, E.coli, Lactobacillus species and Bacteroidetes are colonised in the gut. After one 

year of age, Bacteroidetes and Lactobacillus remain abundant ones together with clostridia, while 

the abundance of Bifidobacteria and E.coli drops. After 2 years of life, the composition of the gut 

microbiota is quite similar to adults (Koenig et al., 2011).   
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Figure 2 The maximum availability of different substrates for human colonic fermentation. The amount for 

peptides, dietary protein resistant starch, non-starch polysaccharides, unabsorbed sugars and oligosaccharides can vary 

between 4-8, 1-12, 5-40, 10-20, 1-9 and 2-9 gr, respectively. Adapted from (Kovatcheva-Datchary et al., 2013). 

 

2.1.4.   The human host-gut microbiota interactions and association with diseases  

Increased numbers of studies on host-microbe interactions indicate the significant impact of 

microbiota composition on host metabolism. Particularly, the host and gut microbiota symbiosis 

results in the exchange of small bioactive molecules between each other which have influence on 

health and disease states of the host. Along the GI tract, different molecules can be secreted by the 

microbes or host cells/tissues. There are different metabolites that regulate the host-microbiota 

interactions, which SCFAs is the well-studied ones. Butyrate, besides being the energy source, has 

been shown as energy homeostasis triggering leptin secretion in adipose cells (Xiong et al., 2004). 

Moreover, SCFAs decrease the colonic PH, prevent the growth of pathogens and have an effect on 

the occurrence of insulin resistance and obesity (Samuel et al., 2008; Scheppach, 1994; Wong et 

al., 2006). The production of SCFAs in the human gut microbiota has been attributed to Firmicutes 

phyla, including Clostridia clusters IV and XIVa as well as the Eubacterium, Roseburia, 

Faecalibacterium and Coprococcus species. Table 1 summarise the metabolites, contributed 

microbes and their role in health and disease.  

 

The other metabolite that is utilised by both gut microbes and the liver is Choline, which should be 

absorbed from the diet. Choline is metabolised to trimethylamine by gut microbes and further to 

trimethylamine-N-oxide, and it may have a potential pathological role in the progression of 

atherosclerosis (Dumas et al., 2006). Moreover, choline stimulates the lipid metabolism and 

glucose homeostasis and may contribute to the progression of non-alcoholic fatty liver disease and 

diabetes (Dumas et al., 2006; Wang et al., 2011). The related bacteria in the metabolism of choline 

are Bifidobacterium Spp. and Faecalibacterium prausnitzii. The human liver produces bile acids, 

a type of steroid acid produced from cholesterol-derived precursor molecules. Bile acids assist in 

dietary lipid metabolism and the absorption of fat-soluble vitamins and cholesterol. More than 90% 
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to 95% of released bile acids in the small intestine are absorbed into the distal ileum and transported 

back to the liver. Humans can have 4 to 12 of this circulation which is called enterohepatic (Dawson 

et al., 2009). The rest of the bile acids that escape from intestinal absorption are transferred to the 

colon and metabolised by the microbiota. The main bacterial metabolism of bile acids is 

deconjugation and conversion of primary to secondary bile acids such as deoxycholate and 

lithocholate (Groh et al., 1993; Ridlon et al., 2006). Then the secondary bile acids are reabsorbed 

into the liver while a high level of secondary bile acids is one of the colon cancer markers (Ridlon 

et al., 2006). The gut bacteria involved in bile acid metabolism are mainly from the Lactobacillus, 

Bifidobacteria, Enterobacter, Bacteroides and Clostridium species.
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Table 1 Relevant contribution of gut microbiota, metabolites and their potential biological functions 

Metabolites Species Microbial group Metabolic functions Disease association  Ref. 

Acetate 

  

  

  

  

  

  

  

  

  

Bacteroidetes spp. Bacteroidetes Polysaccharide breakdown Cardiovascular disease,  (Samuel et al., 

2008; Scheppach, 

1994; Wong et 

al., 2006) 

Prevotella spp. Polysaccharide breakdown Obesity, 

B. thetaiotaomicron Polysaccharide breakdown, mucin 

degradation 

 type 2 diabetes 

Bifidobacterium 

adolescentis 

Actinobacteria Carbohydrate metabolism   

B. longum Carbohydrate metabolism   

Collinsella spp. Carbohydrate metabolism   

Ruminococcus bromii Clostridium 

cluster IV 

Carbohydrate metabolism   

R. flavefaciens Plant fibre breakdown   

Victivallis vadenis Verrucomicrobia Cellobiose degradation   

Akkermansia 

muciniphila 

Verrucomicrobia Mucin degradation   

Butyrate 

  

  

  

  

F. prausnitzii Clostridium 

cluster IV 

Carbohydrate metabolism Colorectal cancer 

R. inulinovarans Clostridium 

cluster 

Carbohydrate metabolism  type 2 diabetes 

E. hallii Carbohydrate metabolism, Acetate utiliser Obesity 

A. caccae Carbohydrate metabolism, Acetate utiliser   

E. rectale Carbohydrate metabolism, Acetate utiliser   

Propionate 

  

  

  

B. thetaiotaomicron Bacteroidetes Polysaccharides breakdown, mucin 

degradation 

Cardiovascular disease,  

R. inulinovarans Clostridium 

cluster 

Carbohydrate metabolism Obesity, 

Megasphaera elsdenii Clostridium 

cluster IX 

Gluconic acid metabolism, Acetate, lactate 

utiliser 

 type 2 diabetes 

Akkermansia 

muciniphila 

Verrucomicrobia Mucin degradation   

Choline 

  

Faecalibacterium 

prausnitzii* 

Clostridium 

cluster IV 

Carbohydrate metabolism non-alcoholic fatty 

liver, Obesity 
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Bifidobacterium 

dentium* 

Actinobacteria Protein metabolism diabetes, 

cardiovascular disease 

(Martin et al., 

2010; Wang et 

al., 2011) 

Bile acids Bacteroides fragilis Bacteroidetes Polysaccharides breakdown Colon cancer marker (Groh et al., 

1993; Ridlon et 

al., 2006; Swann 

et al., 2011) 

  

  

  

  

  

Bacteroides vulgatus Polysaccharides breakdown Atherosclerotic 

coronary artery 

Clostridium 

perfringens 

Clostridium 

cluster 

  Diabetes 

Listeria 

monocytogenes 

Bacilli     

Peptostreptococcus 

productus 

Clostridia     

Eggerthella lenta. Actinobacteria     

Vitamins 

  

Bifidobacterium 

dentium 

Actinobacteria     (Koenig et al., 

2011; Said, 2011) 

Lactobacillus rossiae Lactobacillus      

Polyamines 

  

Campylobacter jejuni Proteobacteria   

Carbohydrate metabolism 

Potential tumour 

marker 

  

(Hanfrey et al., 

2011; Matsumoto 

and Benno, 2007) 
Clostridium 

saccharolyticum 

Clostridium 

cluster 

H2S 

  

Desulfovibrio piger Proteobacteria sulphate reducing bacteria, Lactate utiliser Colorectal cancer (Lakhan and 

Kirchgessner, 

2010) Desulfovibrio 

desulfuricans 

sulphate reducing bacteria, Lactate utiliser chronic inflammation 

CH4 Methanobrevibacter 

smithii 

Archaea H2 utiliser Bloating, abdominal 

pain 

 

H2 E. rectale Clostridium 

cluster 

Carbohydrate metabolism, Acetate utiliser Bloating, flatulence, 

diarrhoea 

 

*The choline acts as a substrate for these species. 
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2.2 Systems biology and metabolic modeling  

Part of the work described in this thesis is highly connected to the field of systems biology, where 

a holistic view of the gut microbiota and host metabolism was used to integrate high-throughput 

(HT) data. The rise and spread of systems biology is to a great extent due to the rapid development 

of HT technologies. Seen from one aspect of systems biology, this approach allows us to study the 

interaction of the biological components on a large-scale. The central dogma for this interpretation 

is that of emergent properties. This means the process of larger entities arising through the 

interaction of smaller entities where these don’t have similar properties. A classic example can be 

the interactions between macromolecular biological catalysts and small biological molecules that 

make up the series of biochemical reactions, called metabolic pathways.  

The other way to interpret the term ‘systems biology’ is by looking at this as a paradigm. This 

approach is normally in contradiction to classical reductionist paradigms. The reductionist view as 

Sauer et al. described has perceived limitations (Sauer et al., 2007). Although this approach can 

detect the components and their interactions, it is incapable of present definite methods for 

elucidating the emergent properties within the system.    

Both interpretation of systems biology either as a field or a scientific paradigm require the 

measurement of multiple components simultaneously. Omics techniques like transcriptomics, 

metabolomics and proteomics fulfil this requirement. On the other hand, these data need to be 

integrated with mathematical models, which make the systems biology field reliant on 

bioinformatics and computational biology. As Kitano et al. (Kitano, 2002a, b) described, systems 

biology can be considered as a cycle. It is initiated with the biological information and different 

data sets, followed with computational platforms to integrate these data where ended up to 

hypothesis-driven modeling. These hypotheses are analysed within the system and formed as a 

prediction to set up the right experimental design. After all these experiments are performed in the 

lab for predictions, validation is performed and knowledge is extracted from the new experimental 

data, which itself is then fed into this process loop (Kitano, 2002a, b). In this section, the elements 

of success for the systems biology of individual microorganisms were described following the 

current efforts towards outlining the systems biology of the community, in this case gut microbiota. 

The current status of our understanding of systems biology of individual microorganisms goes back 

to the first whole genome sequencing of bacteria (Fleischmann et al., 1995). This facilitates the 

development of a computational framework to determine the phenotypes of single organisms from 

genotypes which rely on the molecular mechanisms and biochemical information of targeted 

organisms on the genome scale. This mathematical framework allows testing of different 

hypotheses about the phenotypic status of the biological system. One of the in-silico models that 

have this capability to link the genotype to phenotype is genome-scale metabolic model (GEM). In 

the next section, GEM, as one of the common denominators of systems biology, and its application 

in constrained-based modeling is described.  

2.2.1.   Constrained-based modeling  

In 1913, the famous Michaelis and Menten equation for describing enzyme kinetics led to the 

application of mathematical modeling in the field of metabolism. This made it possible to set up 

small models to explain basic metabolism of a cell through determining kinetic parameters of a 

sufficient number of cells (Othmer, 1976). Later, another platform called metabolic control analysis 

was developed to measure the control of enzymes in a certain model (Heinrich et al., 1977). 

However, due to limitations on the availability of kinetic parameters, mathematical methods that 
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rely on steady state metabolic fluxes got attention. A method called metabolic flux analysis has 

been developed that uses the exchange fluxes of metabolites and determines the internal fluxes by 

linear regression (Aiba and Matsuoka, 1979). This approach had the limitation that sufficient 

exchange fluxes had to be measured to have a determined model. Through the years, additional 

constraints were added such as reaction reversibility to decrease the degree of freedom, but the 

breakthrough was the optimality constraint of the model (Fell and Small, 1986). Optimising some 

sort of cellular objective became the starting point of constraint-based modeling (CBM). CBM on 

the metabolic modeling imposes detailed constraints on the solution space to direct the feasibility 

towards relevant phenotypes. For metabolic modeling the CBM is highly identical to flux balance 

analysis (FBA), which is a less comprehensive term.  

To understand better the general constraints in the metabolic network, the summary of these is 

explained. Over a metabolite (xi) a mass balance is given by: 

(
𝑑𝑥𝑖

𝑑𝑡
) = 𝜈𝑜𝑢𝑡,𝑖 + 𝜈𝑖𝑛,𝑖 − 𝜈𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛,𝑖 − 𝜈𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛,𝑖 −  µ𝑥𝑖 

The µ𝑥𝑖  is related to concentration reduction in relation to cell expansion and the value is neglected 

over the fluxes. By considering all the rates around the metabolites in a vector for each reaction 

and a matrix containing stoichiometric coefficients which describe the metabolic model, the end 

equation can be written as: 

𝑑𝑥

𝑑𝑡
= 𝑆 · 𝜈 

Considering that the change of internal metabolites over time is quicker than growth, it can be 

assumed the change in internal metabolite concentration (
𝑑𝑥

𝑑𝑡
) is zero, meaning they are in a steady 

state (Varma and Palsson, 1994a). Converting the network to a matrix makes it possible to use in 

computational platforms. Thus up to now, the metabolic network is constrained by the metabolite 

connectivity and steady state assumption. CBM rather than optimum solution gives back a solution 

space. The challenge behind CBM is to introduce the right constraints in order to reduce the 

solution space to a more biologically relevant space. Thermodynamics can also impose another 

constraint by identifying the reversibility of chemical reactions through calculation around Gibbs 

free energy (Bianucci et al., 1995). By measuring some fluxes, another constraint can be imposed 

by the upper bond and lower bond of individual reaction fluxes. Meanwhile, many efforts are being 

made to impose different constraints to shrink the solution space even more towards 

physiologically relevant phenotypes, such as determining diffusion rates, enzyme capability and 

activity (Covert et al., 2001) and thermodynamic feasibility (Beard et al., 2002). After 

parametrisation of the model, the flux distribution can be calculated. However, the essential 

component in the FBA is maximising or minimising an objective, where it is a linear combination 

of reactions as the product of flux and objective coefficient.  This objective, even in very large 

problems, can be solved through linear programming where only one optimal solution is found 

(Karp, 2008). There are many attempts to define the good objective function, but maximising 

growth for microbial cells where their biomass compositions are determinable is still by far the 

standard one (Varma and Palsson, 1994b). To date, a number of different objective functions have 

been implemented in FBA, such as minimisation of substrate consumption (Oliveira et al., 2005; 

Ramakrishna et al., 2001), maximisation of ATP yield (Vangulik and Heijnen, 1995), minimisation 

of ATP production or redox potential (Knorr et al., 2007). Combination of multiple objective 
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functions has also been implemented for optimality of microbial metabolism (Schuetz et al., 2012). 

Moreover, different unbiased approaches such as sampling of the solution space and HT data 

integration are used to go beyond the assumption of an objective function.   

2.2.2.     Reconstruction of GEMs 

The availability of whole genome sequencing and physiological experiments enabled the 

illustration of metabolic genes in the assessment of phenotype behaviour of target organism 

through genome-scale metabolic modeling. GEMs reconstruction can be considered as an iterative 

process. To begin with, genomic and bibliomic data for the organism of interest is extracted. These 

data are integrated to determine the enzyme substrates and reaction stoichiometry, metabolite 

chemical formulae, reaction directionality and other necessary information, involve the 

spontaneous reactions and define biomass composition in the case of microbes. Then, this set up is 

tested in a controlling pipeline to check the quality of the model. After passing the quality control, 

a functional GEM is reconstructed, otherwise the model goes through the data integration and 

evaluation. There have been different reviews and protocols published for the detailed description 

of GEM reconstruction (Thiele and Palsson, 2010), where the process has been summarised in 96 

steps with practical information. This process can be very time consuming and a laborious task, 

which can take anywhere from months to a year.  However, there have been a number of methods 

and toolboxes to automate some parts of the reconstruction process, such as Model Seed (Henry et 

al., 2010), AUTOGRAPH (Notebaart et al., 2006), IdentiCS (Sun and Zeng, 2004), GEM system 

(Arakawa et al., 2006) and the RAVEN toolbox (Agren et al., 2013).  

 

2.2.3.     Application of GEMs in CBM 

GEMs are a great platform for understanding and assessing phenotypic functions of a target 

organism and through this, to identify new targets for different fields of interest like metabolic 

engineering or drug discovery. Different methods and algorithms have been published based on 

CBM using GEMs and they have been extensively reviewed by Lewis et al. and Zomorrodi et al. 

(Lewis et al., 2012; Zomorrodi et al., 2012). Most of these methods use optimisation either for 

predictions and explore metabolic capabilities or model improvement and reconcile 

inconsistencies. These methods rely on one of the following optimisation frameworks: Linear 

programming (LP) requires a linear objective function and finds one optimum solution. LP can 

find an optimum solution even for large models efficiently. Quadratic programming (QP) makes 

it possible to have a quadratic term in an objective function although the optimisation formulation 

is similar to LP. Mixed-integer linear programming (MILP) is founded on LP and when some 

or all the variables are constrained to integer values. Bi-level optimisation refers to when one 

problem is nested in another one and so two level optimisation is needed. This programming 

optimises the objective in respect that another cellular objective should be optimised. Heuristic 

optimisation finds the approximate solution in a short time frame. This method trades away the 

exact solution, but is useful when classical methods fail to find one or they are computationally 

expensive. Although heuristic methods can produce a result alone, sometimes they are also used 

together with other optimisation methods for greater efficiency. Examples of the algorithm for 

CBM using GEMs together with their functionality and the method in use were summarised as 

examples in Table 2. 
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Table 2 Examples of optimisation algorithms to explore and redesign metabolic models. Adapted from (Zomorrodi et 

al., 2012) 

Name  Description Optimisation Ref. 

MOMA Minimisation of metabolic adjustment in response to genetic 

modifications 

QP, MILP (Segre et al., 2002) 

ROOM Regulatory on/off optimisation for strain design MILP (Shlomi et al., 2005) 

ObjFind Determining the consistency of obj.fun. With experimental data LP (Burgard and Maranas, 

2003) 

OptKnock Gene deletion strategies Bi-level  

OptGene Knockouts for  in-silico metabolic engineering QP, LP (Patil et al., 2005) 

OptStrain Addition/deletion of reactions to redesign microbial production 

system 

Bi-level, MILP (Pharkya et al., 2004) 

OptReg  identifying reaction activation/inhibition/elimination for 

overproduction 

Bi-level, MILP (Pharkya and Maranas, 
2006) 

OptCom A Multi-Level Optimisation for modeling microbial communities Bi-level (Zomorrodi and 

Maranas, 2012) 

INIT GEM reconstruction for cell/cancer type based on transcriptome 

& proteome data 

MILP (Agren et al., 2012) 

GDLS Knockouts, upregulations/downregulations Heuristic (Lun et al., 2009) 

 

2.2.4.     Application of GEMs in data integration 

GEMs are also widely used for integration, interpretation and contextualising omics data. Different 

algorithms have been developed and extensively reviewed (Durot et al., 2009). Since describing 

all the methods and details is outside the scope of this thesis, a few examples of omics data using 

GEMs will be briefly illustrated. Fluxomics are one of the omics that are directly applicable for 

integration with GEMs. Methods like 13C labelling substrates measure intracellular fluxes through 

atom mapping model, but they can build a small model and in most cases, the central carbon 

metabolism. It is therefore seen that some important metabolisms are not covered, but GEMs help 

to expand the atomic model and elucidate the metabolic flux for large-scale models (Suthers et al., 

2007). There is also an optimisation framework, OptMeas, that can identify the optimal 

measurement sets to complete the flux elucidation metabolic flux analysis experiments through 

integer linear programming (Chang et al., 2008). Another algorithm, ObjFind, uses fluxomics data 

to determine the objective function that brings about the right phenotype (Burgard and Maranas, 

2003). Metabolomics refers to large-scale quantification of internal metabolites that can provide 

an instantaneous snapshot of the cell physiology. Concentration of metabolites is not directly 

applicable to GEMs, but is very much in use for model improvement through finding 

missing/misleading functions (Kummel et al., 2006; Oh et al., 2007). An algorithm, (Integrative 

omics analysis) IOMA, uses the quantitative proteomics and metabolomics together with GEMs to 

more accurately predict the flux distribution (Yizhak et al., 2010). Transcriptomics are generated 

widely in different studies. Due to the multiple layers of regulation between transcripts level and 

fluxes, it is therefore challenging to change the model constraints. Nevertheless, the expression 

levels have been used in a binary mode to decide which gene is highly or lowly expressed. A 

method called Gene Inactivity Moderated by Metabolism 
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Figure 3 The layout of GEM reconstruction and examples of GEM applications. These are metabolic reactions 

and metabolites associated with enzymes. These enzymes are linked to their transcripts, which are linked to 

corresponding genes. Through the stoichiometric coefficients the S matrix is constructed, which defines the metabolic 

network. GEMs can have different applications. One simple application uses the network dependent analysis through 

HT data integration. CBM is another method that uses GEMs to predict the cellular phenotype. The generic GEMs can 

also be used to build cell-specific models through multi-omics integration. 

 

and Expression (GIMME) uses gene expression together with a presumed biological objective to 

generate a specific model through minimising the utilisation of inactive reactions associated with 

low expressed genes (Becker and Palsson, 2008). Another algorithm called Integrative Network 

Inference for Tissues (INIT) uses transcriptomics or proteomics data to maximise the utilisation of 

reactions associated with an abundance of proteins/genes. In this algorithm, all the reactions should 

carry a flux and all experimentally observed metabolites should be produced (Agren et al., 2012). 

Another way of using expression data is to analyse it based on the network topology and 

significance of expressed genes between two conditions (Patil and Nielsen, 2005). Based on links 

between metabolites and genes through their associated reactions, a bipartite graph can be 

generated from the metabolic model. Using this graph and expression, data a meta-analysis can be 

performed to see if the genes that were associated with a metabolite are deferentially expressed or 

not. If yes, this metabolite is called a reporter metabolite. Almost exactly the same concept has 

used to introduce the reporter subnetworks. This time a unipartite enzyme interaction graph is 

generated from the model and the heuristic method is used to find the set of connected enzymes 

that are associated with overall significant change in expression. A very useful algorithm has been 

generated to reveal transcriptional regulation in enzymes by using flux distribution and gene 

expression data (Bordel et al., 2010). This method uses some external fluxes as the constraints and 

it finds a set of flux distributions by sampling the solution space with average and standard 

deviation of each flux. These values between two conditions show the significant changes for each 

reaction and it makes it comparable with significant changes in gene transcription of associated 

enzymes.  

GEMs together with omics data have been integrated to reconstruct cell/tissue specific GEMs. 

Different global metabolic models have been generated for human (Duarte et al., 2007; Ma et al., 

2007; Mardinoglu et al., 2014). Since metabolism changes from each cell/tissue to anotherand 

therefore their physiological states, it is necessary to look at them in specific GEMs. Algorithms 

have therefore been developed to reconstruct such models. The tINIT (Task‐driven Integrative 

Network Inference for Tissues) algorithm is a method that uses protein evidence and set of task-

driven to reconstruct the cell/tissue GEMs (Agren et al., 2014). These specific GEMs are a great 

scaffold for identifying metabolic changes and molecular mechanisms in response to disease 

progression and therefore facilitate the development of efficient treatments and discovery of drug 

targets.  

2.3. Community systems biology  

In most microbiome studies, top-down methods are applied such as 16S rRNA sequencing or 

metagenomics, which I have previously described in this thesis. These methods provide valuable 

details about the community but are incapable of identifying some key information. For example, 

ribosomal RNA genes are used to assess the community phylogenetically but this method is unable 

to capture the metabolic capacities of the community. Even a metagenomics analysis with all the 

results from an intact community often misses the information regarding single cell/species. 

Recently, a computational pipeline has been generated to elucidate the strain-level copy-number 

variation across human gut microbiome species from metagenomics data (Greenblum et al., 2015). 
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Extensive understanding of community structures and dynamics is captured through the use of the 

computational methods, different correlation and association analysis which can be performed 

between the community members (Chaffron et al., 2010). Nevertheless, even close correlation 

cannot delineate the causality. It is therefore necessary to apply other approaches to describe the 

inner workings of the microbial community. In this context, bottom-up methods may aid in 

elucidating the metabolic interactions between the members of the community in simple synthetic 

communities or animal models. Another powerful alternative is the use of metabolic modeling to 

understand the mechanisms of interactions. These methods are briefly described below. 

 

2.3.1.     In-vivo based methods to study the community 

In-vivo models are great scaffolds for interpreting the link between human gut microbiome and 

human phenotypes by studying the host-microbiome interplay and manipulating different 

parameters while it is not practicable in human studies. Different model organisms have been 

considered to study the microbiome such as drosophila, zebrafish and mice (Chandler et al., 2011; 

Mahowald et al., 2009; Mouse Genome Sequencing et al., 2002; Roeselers et al., 2011) . Among 

all of these, mice have shown similarity to the human gut system in phylum through family levels 

(Mouse Genome Sequencing et al., 2002; Spor et al., 2011). Practically, when the mice are 

sterilised from exposure to any microorganisms, these mice are called germ-free (GF) mice and 

when they are colonised with microorganisms, they are called gnotobiotic mice. These types of 

animals provide great opportunities to govern variables like host genotype, diet and microbial 

ecosystem. Different combinations of microbial community have been colonised into GF mice to 

identify the gut microbe-microbe and microbe-host phenotype relationships (Faith et al., 2014). In 

one study, the response of diet on a colonised mouse with ten sequence human gut microbiota was 

evaluated (Faith et al., 2011). A statistical model has been developed accordingly to predict the 

variation of species abundance in response to different diets.  

Even though the distal gut microbiota of humans and mice have the same phyla distribution, they 

are dissimilar in genera and species levels. The human faecal microbiota have thus also been 

transplanted to the GF mice to have more applicable models (Turnbaugh et al., 2009b). In one 

study, this humanised mouse gut microbiota from discordant twins showed the obesity modulate 

metabolism through gut bacteria and the diet dependency on the bacteria interactions (Ridaura et 

al., 2013). 

Despite all the advantages of mouse models in gut microbiota studies, there are certain limitations 

that should be considered. Some of these limitations are: 1) Variety of factors that shape the human 

gut microbiota throughout life is absent in mouse models. 2) Different strains of mice can develop 

divergent gut microbiota composition. 3) Incapability of mice to recapitulate the human inherent 

genetic variations.  
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Figure 4 Proposed pipeline for understanding the causality of microbial communities and the interactions 

between the members. The microbial imbalance and the microbes associated with disease can be defined by applying 

metanomics approaches to different human microbial ecosystems in healthy and diseased conditions. These findings 

can be harvested to establish a workflow for genome-scale modeling. Through different applications of GEMs, the 

hidden causalities of this community can be elucidated and different hypothesis can be generated or evaluated. In order 

to validate the hypothesis and directly link the microbes with the disease state, the GF mice can be colonised with the 

target microbes and the responses of different host tissues can be analysed.  

2.3.2.     Modeling based methods for studying the community 

The animal models can be limited and sometimes fail to discover the mechanisms of different 

interactions between the community members. As we understood from the modeling approaches 

for a single organism, they are a great scaffold for elucidating the underlying mechanisms behind 

them. It is therefore necessary to use these modeling approaches in the community to provide a 

better understanding of mechanisms within the complex community. As described before, GEMs 

are a great platform for elucidating underlying genotype-phenotype relationships at the single 

species level. With developing different frameworks, such modeling can be performed for the 

communities. Generating different GEMs of species within a community can facilitate 

interpretation of their phenotypic behaviour and elucidate the metabolic machinery of their 

interactions with other members. However, to describe the overall metabolism of community, the 

metagenome-scale models can be reconstructed (Greenblum et al., 2012). To address the questions 

concerning the community through modeling, two alternative approaches; network-based and 

constraint-based modeling, can be proposed. These two are briefly described in the next two 

sections.  
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Network-based models for studying the community 

One way of using GEMs is the topology information that can be extracted from these models. 

Although network-based models employ a simple approach, they generates valuable insights into 

the metabolism of single species and multi-species, regardless of flux and stoichiometric 

parameters (Borenstein et al., 2008; Jeong et al., 2000). These models can be set up by using 

minimum information and so can be applied to complex microbiome studies. Through 

reconstruction of multiple relevant GEMs in different communities, the metabolically cross-species 

interactions have been investigated. In one study using this approach, the bacterial ecological co-

occurrence in large-scale was explored (Freilich et al., 2010). This approach has been applied to 

human gut ecosystems through reconstruction of more than 150 GEMs for gut-inhabited species 

(Levy and Borenstein, 2013). Looking at each pair of species and using the network-based method, 

the metabolic competition and cross-feeding over them was predicted. Using the predictions and 

taking to account the co-occurrence of species through metagenomics data, the rules behind the gut 

community-level assembly have been studied. Cottret et al have linked the network-based 

information from interacting species and host to exchanges in metabolites (Cottret et al., 2010). 

Moving away from an individual species approach, GEMs can be reconstructed in the microbiome 

scale through pooling all relevant biochemical reactions that occur in the community. Using these 

metagenome-scale models may facilitate the integration of meta’omics data and lead to better 

exploration of the community behaviour. Greenblum et al. has integrated the metagenomics data 

into the community level metabolic model and linked the microbiome enzyme abundances to 

obesity as well as inflammatory bowel disease (Greenblum et al., 2012). This group of enzymes 

had close interplay between microbiome and host, and affects the physiology of the host. In 

different studies, metatranscriptomics and metametabolomics data have also been integrated into 

these large scale models and key components have been identified in the community from different 

ecological changes (Hartman et al., 2009; Jorth et al., 2014). 

  

Constrained-based modeling for studying the community  

The predictive and descriptive power of CBM has shown for identifying the characteristics of 

single species. Taking account the stoichiometry information and introduced constraints for the 

metabolic fluxes, the overall distribution of fluxes can be determined through optimising for 

predefined objective functions. As I mentioned before, the most applied objective function for 

microbe GEMs is biomass which is optimisation of the uptake and secretion of metabolites to 

predict the growth. This successfully established workflow for individual species persuades 

researchers to propose the analogous road map for using CBM in communities. The multispecies 

CBM can be practical through revision of the current problem formulation and tuning more 

parameters. The metabolic modeling between methanogenic archaea and sulphate-reducing 

bacteria was the very first effort towards multispecies CBM (Stolyar et al., 2007). The formulation 

for this modeling was scaling up the stoichiometric matrix and considering each model as a discrete 

compartment and one additional compartment for metabolites exchanged between the two species. 

This modeling approach predicted the overall metabolic fluxes and the phenotype of each species 

in the community as well as the growth parameters and the composition of the community. This 

expansion of stoichiometric matrix with different compartments started to be popular for modeling 

communities. Freilich et al explored the interactions between the bacterial pairs in the forms of 

competition and cooperation using metabolic models for 118 species and FBA (Freilich et al., 

2011). They observed that the cooperative interactions have a tendency to be unidirectional 

although these species make a cooperative loop so all the species can benefit. Most of these studies 
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that have taken the advantage of the compartmentalisation approach have integrated the measured 

abundances ratio into the community objective function. The weighted summation of biomass for 

microbial community is therefore considered as an objective. However, determining this objective 

has a limitation due to indefinite growth rate ratios, so a more applicable method has been proposed. 

A powerful approach called OptCom by Zomorrodi et al. 2012 has suggested using the multi-level 

objective function to use in community modeling (Zomorrodi and Maranas, 2012). An inner 

objective for species-level and one outer objective for overall community growth, the overall flux 

distribution and growth phenotype of species and community can be predicted through bi-level 

optimisation. This has been followed by a dynamic approach for multi-level and multi-objective 

metabolic modeling of the communities, called d-OptCom. So this framework makes it possible to 

simultaneously optimise for the community-level and species-level, while capable of extracting the 

dynamic biomass concentration of the community and individuals as well as the exchanged 

metabolites. In another study, community modeling has advanced using CBM for the gut microbe 

and its host interactions, wherein the microbe growth has been constrained and the host phenotype 

has been optimised (Heinken et al., 2013).    
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3.  Results and discussion 
In the following sections summarize the publications underlying the thesis. The result section can 

be divided to understanding the microbe-microbe interactions in gut using GEMs (Section 3.1), 

comprehensive computational and in-vivo tools for analysis of microbe-microbe interactions in gut 

(section 3.2) and quantifying the metabolic changes of host-microbes (section 3.3).  

 

3.1. Understanding the microbe-microbe interactions in gut using GEMs 

The human gastrointestinal system contains a variety of microbes outnumbering our own cells by 

a factor of 10, and previous studies have shown that the composition of the gut microbiota is 

influenced by diet, environment and age. The gut microbiota is involved in the conversion of 

nutrients, the stimulation of the immune system and in providing resistance to pathogens. The 

human gut microbiome can therefore play an influential role in maintaining human health, and it 

is a potential target for prevention and treatment of disease. This will, however, require 

understanding of the complex interactions between diet, microbiota and the host phenotype. Due 

to the extreme complexity of this system, mathematical models will be needed for deciphering the 

role of its individual elements and hereby assist in providing an understanding of the mechanisms 

behind the effects of diet, the genotype-phenotype relationships and microbial robustness. Recently 

genome-scale metabolic models (GEMs) have been used to explore the interactions between 

microbes in community and microbes and human host, but these models are not directly applicable 

to the gut microbiome and its interactions with the host metabolism. 

 

3.1.2.     Paper I: Understanding the interactions between bacteria in the human gut 

through metabolic modeling 

The gut microbiota functions as a metabolically active organ and digests dietary components that 

are indigestible to human cells which can then be absorbed and metabolized by the human body 

(Backhed et al., 2005). The microorganism which inhabits the human gastrointestinal system is 

referred to as the gut microbiota and the genome sequence of this ecosystem is called the gut 

microbiome. The human gut microbiota carries out different metabolic functions relevant to the 

host, and perturbation or diversion of the microbiota can lead to disease development (Kinross et 

al., 2011; Turnbaugh et al., 2009a). Improvements in DNA sequencing technology and cost 

reductions open new possibilities to study the human microbiome in health and disease. As 

expected from previous studies, the 16 S rRNA sequencing has indicated the gut microbiota to be 

mainly dominated by the phyla Bacteroidetes and Firmicutes with 17-60% being Bacteroides and 

35-80% being Firmicutes (Costello et al., 2009; Eckburg et al., 2005; Karlsson et al., 2011; Tap et 

al., 2009). Other key phyla in the human gut microbiota are Actinobacteria, Proteobacteria and 

Euryarchaeota (Arumugam et al., 2011). In this work we aim make use of two recently available 

technologies: metagenomics and genome scale metabolic model (GEM) simulation in order to 

generate an integrated mathematical model that describe metabolism in the gut ecosystem and its 

interactions with the host. Two well characterized bacteria, Bacteroides thetaiotamicron and 

Eubacterium rectale as representatives of the two abundant phyla, Bacteroides and Firmicutes were 

chosen for GEM reconstruction. Methanobrevibacter smithii, as a methanogenic and dominant 

archaeon in the human gut microbiome was selected as a third species because it plays a key role 

in gut microbial metabolism of hydrogen (Samuel et al., 2007). Despite of low abundance of M. 

smithii in metagenomics studies, it has a significant role in the human gut by removal of hydrogen 

gas and production of methane. Removal of hydrogen gas is important to consider as it affects 
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bacterial fermentation and energy harvesting (Armougom et al., 2009). The interactions between 

these three species are mediated by the production of short chain fatty acids (SCFAs) (acetate, 

propionate and butyrate), hydrogen and methane. The SCFAs absorbed through the gut epithelial 

cells, have strong effects on the energy regulation and the immune system of the host (Comalada 

et al., 2006). The relative absorption of SCFAs by colon varies between 60-90% (McNeil et al., 

1978; Ruppin et al., 1980), and oxidization of SCFAs can provide energy for colonic mucosa and 

may contributes as much as 5-10% of the total energy for a healthy body (McNeil, 1984) (Figure 

5). 

To model the function of bacteria in the human gut ecosystem, we reconstructed GEMs of three 

key species; iBth1201 (B. thetaiotaomicron), iEre400 (E. rectale) and iMsi385 (M. smithii), which 

are relevant representatives of three phyla in the human gut (Bacteroidetes, Firmicutes and 

Euryarchaeota). We formalized mathematically two different scenarios to which the modeling of 

microbial communities can be applied. In the first case the composition of the diet and the species 

abundances in the microbiota is known and constitute the input of the model. In this scenario we 

aim to predict the profile of compounds produced by the microbiota and hence represent 

metabolites that can be taken up by the host. We refer to this simulation problem as the α-problem 

and a solution is found by minimizing the substrate uptake rate. Alternatively we might be 

interested in predicting the abundances of the different species in the microbiota as a function of 

the diet. We refer to this problem as the β-problem. We further demonstrate that by integrating the 

topological information provided by GEMs with diet compositions, genomic and transcriptomic 

data, community metabolic modeling provide a mechanistic interpretation to statistical findings 

provided by metagenomics, and this leads to improved understanding of the relationships between 

diet, microbiota and disease and hereby enables a rational design of prebiotic and probiotic 

treatments.  

After in-silico evaluations of single species as a simple model for gut microbiome, gut ecosystems 

involving two species were simulated. When E. rectale is together with B. thetaiotaomicron, two 

bacteria cooperate through exchanging acetate. In presence of B. thetaiotaomicron, E. rectale 

utilizes some portion of acetate produced by B. thetaiotaomicron and produce butyrate. Minor 

proportions of carbohydrates are utlized by E. rectale and most are taken up by B. 

thetaiotaomicron. The community stoichiometric matrix was established based on single 

stoichiometric matrixes within another compartment for the exchange of metabolites between the 

two species. Through solving α-problem, the biomass of each individual in the community was 

constrained to its experimental value and FBA was employed to minimize the input utilization. 

Then the SCFAs production was compared to available mice data (Figure 6A). Co-colonization of 

B. thetaiotaomicron and M. smithii was applied for modeling as well, where the key interactions 

between them are acetate and formate. These two metabolites are taken up by M. smithii and 

methane is produced through methanogenesis pathway (Figure 5). The α-problem was solved as 

well for this set up. 
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Figure 5 Overview of metabolism by the three bacteria in the gut. This figure show simplified pathways in bacteria 

for production of SCFAs and other products. 

The β-problem is described as the biomass of individuals as objective function and preditc the other 

products through given only the composition of the diet as an input. Through solving the β-problem 

for a community composed of B. thetaiotaomicron, E. rectale, M. smithii as representatives of 

predominant phyla in the human gut microbiota, leads to determine the optimum SCFAs production 

based on different abundances of B. thetaiotaomicron, E. rectale, M. smithii and substrate.  The 

interplay between the members of this community were acetate through secretion by B. 

thetaiotaomicron and utilization by E. rectale, M. smithii. As well CO2 produced by E. rectale and 

consumed by M. smithii. The substrate was divided between E. rectale and B. thetaiotaomicron, 

based on the ratios obtained from simulations with the α-problem with E. rectale and B. 

thetaiotaomicron. By solving this problem SCFAs production, abundances of each individual and 

other byproducts such as methane and succinate were predicted. (Figure 6B). 

GEMs link genotype and phenotype and allow for making new hypothesis for cellular metabolism 

and generating novel biological targets based on omics data. The transcriptome dataset (Mahowald 

et al., 2009) that profile the transcriptome of E. rectale and B. thetaiotaomicron in monocolonized 

mice with co-colonized mice were used to integrate with the models. Reporter metabolites 
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algorithm that identifies a set of metabolites around which show a strong transcriptional response 

and identify the hot spot of the metabolism (Patil and Nielsen, 2005). Metabolites involved in 

amino acid metabolism, aminoacyl-tRNA biosynthesis, TCA cycle, NAD and CoA and nucleotide 

biosynthesis were shown as reporter metabolites for the case of E. rectale response to co-

colonization of B. thetaiotaomicron. The neighbor genes for these metabolites were upregulated. 

Moreover down regulation genes involved in carbohydrate metabolism, identified metabolites like 

melibiose, fructose, galactose and raffinose as reporter metabolites. In different case when B. 

thetaiotaomicron was co-colonized with E. ractale, genes involved in poly and mono-saccharides, 

carbohydrates and glycans were upregulated and accordingly the reporter metabolites mannan, 

fucose and glucose were identified.  
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Figure 6 Predictions and comparison of modeling two bacteria through solving, α-problem (A), and modeling the 

three bacteria through solving β-problem (B). 

The reporter subnetworks algorithm was used as well to determine the collection of metabolic 

reactions in association with transcriptional data. Utilization of amino acids were increased and 

degradation of carbohydrates decreased through adaptation of E. rectale to B. thetaiotaomicron 

(Figure7A) whereas utilization of polysaccharides were boosted up when B. thetaiotaomicron was 

adapted to E. rectale (Figure 7B).  

Through integration of GEMs with transcription data, the transcriptional metabolic responses for 

each member in response to symbiotic conditions were identified. E. rectale when co-colonized 

with B. thetaiotaomicron, expression of genes involved in amino acid metabolism, TCA cycle and 

purine belong to E. rectale, were up regulated and genes involved in the degradation of 

carbohydrates were downregulated. This findings were supported by Reporter Metabolite and 

subnetworks. It appears E. rectale increase its abundance dependent on the amino acid 

consumption in particular glutamine which is the most abundant amino acid in the blood. 

Glutamine is a source of nitrogen and is utilized as the precursor for the biosynthesis major biomass 

macromolecules. Glutamine consumed by E. rectale is transformed to glutamate and to other 

intermediates, required for the synthesis of alanine, aspartate, arginine and proline. It has been 

shown the decreased level of glutamine in the PPAR-α null mouse, indicates number of 

discrepancies linked to diabetes and the metabolic syndrome (Atherton et al., 2006) and the high 

abundance of Firmicutes species were reported in obese mice compare to lean mice. Here we 

observed E. rectale may be involved in reducing glutamine level in the blood through consuming 

that to increase the biomass.  
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Figure 7 Result of reporter subnetworks for transcriptional response of co-colonization, when E. rectale responds 

to B. thetaiotaomicron colonization (A) and of B. thetaiotaomicron responds to E. rectale colonization. 
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3.2. Comprehensive computational and in-vivo tools for analysis of microbe-microbe 

interactions in gut 
In this section we present two platforms for analysis of microbe interactions in a community. These 

platform can be used as well to look at the interactions between microbes-host. Here, we describe 

the CASINO (Community and Systems-level Interactive Optimization) Toolbox for analysis of 

microbial communities through metabolic modeling. We tested CASINO on a gut ecosystem to 

understand the mechanistic insight into the contribution of individual species in the gut microbiome 

to the overall metabolism of the ecosystem and further how the ecosystem and the individual 

species contribute to host metabolism. Moreover as in-vivo model, we developed SIM (Simplified 

Intestinal Microbiota) consists of ten representative strains isolated from the human gut colonized 

in to germ-free mice. This great tool empowers the understanding the microbe-microbe and host 

interactions and facilitates the generation and evaluation of new hypothesis. 

3.2.1.     Paper II: Quantifying diet-induced changes in metabolism of the human gut 

microbiome through metabolic modeling 

We have previously reconstructed GEMs for Bacteroides thetaiotamicron, Eubacterium rectale 

and Methanobrevibacter smithii which are the relevant representatives of three dominant phyla in 

the human gut and studied the interactions between these bacteria in different combinations of gut 

ecosystems (Shoaie et al., 2013). We also reconstructed GEMs for Bifidobacterium adolescentis 

and Faecalibacterium prausnitzii and simulated the interactions between these bacteria (El-

Semman et al., 2014). In both studies, the interactions between the bacteria were identified 

manually and the consumption and production rates of the defined interacting metabolites by each 

bacteria were quantified. However, approach cannot be used for simulation of the interactions for 

a large number of species representing the complete gut ecosystem. We therefore developed the 

CASINO (Community And Systems-level INteractive Optimization) Toolbox that comprises an 

optimization algorithm along with diet analysis and allocation algorithm for prediction of the 

phenotypes within the human gut microbiota. The optimization algorithm was designed based on 

collaborative and a multi-dimensional distribution approach. In CASINO, the model of the 

community system is linearized by separating the lower level describing the individual species 

(organism-level) and the higher level describing the community (systems-level). CASINO as well 

takes advantage of community topology through identification of species as effector (producing 

metabolites) and receptor (consuming the metabolites produced by effector). Using this 

information in the first stage the metabolites secreted by each model determined through organism-

level optimization. Then the iterative multi-level optimization is performed until the total 

community biomass is optimized. We used CASINO to simulate the interactions between the 

microbes in two in-silico microbial communities including EBBR (E. rectale, B. adolescentis, B. 

thetaiotaomicron and R. bromii) and FBBR (F. prausnitzii, B. adolescentis, B. thetaiotaomicron 

and R. bromii). We predicted the net production and consumption of the metabolites 

produced/consumed by each community as well as the contribution of individual bacteria to the 

phenotype of the each community. Figure 8 summarizes different stages of the study. After 

validation of the individual GEMs and confirming the predictive power of the CASINO toolbox, 

we simulated the effect of the diet on two different subject groups that have been classified based 

on their gut microbial gene richness.   
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Figure 8 The outline of study (a) Genome-scale metabolic models (GEMs) for L. reuteri and R. bromii were generated 

by the RAVEN Toolbox using whole genome sequencing and metagenomics data, and these models were manually 

curated based on literature information for the reconstruction of functional models. Previously reconstructed GEMs 

for B. thetaiotaomicron, E. rectale, B. adolescentis and F. prausnitzii were also expanded using the same pipeline. (b) 

Each model was validated by comparison with experimental data obtained from culturing bacteria for 24h in M2 media 

supplemented with different carbon sources for optimum growth of each bacterium. Growth was measured after 24 

hours and used for the validation of the model.  (c) Samples were collected at baseline and after 24h for performing 

16S rRNA and metabolomics analysis. Bacteria were identified using 16S rRNA and DNA concentration was 

measured using nano drops. The concentration of SCFAs, amino acids and carbohydrates were also quantified. The 

carbohydrate measurements were done by hydrolyzing all the polysaccharides to glucose. (d) Each GEM was validated 

based on the genomics and metabolomics data generated by in vitro experiments. The byproducts and the substrate 

usage were constrained in the models and the growth rate was compared with the experimental data. (e) Two in-silico 

microbial communities EBBR (E. rectale + B. adolescentis + B. thetaiotaomicron + R. bromii) and FBBR (F. 

prausnitzii + B. adolescentis + B. thetaiotaomicron + R. bromii) were designed and simulated using CASINO. The 

results were compared with in-vitro experiments for EBBR and FBBR communities. (f) In CASINO the interactions of 

the bacteria as well as the phenotype of the community were identified using an optimization algorithm. Growth of 

each bacterium had local optimum whereas the community had global optimum. The community optimum was 

detected by the intersection point of the community fixed constraints and calculated dynamic constraints which is 

obtained by local and community forces summation. (g) A diet algorithm was developed and implemented for 

prediction of the macromolecules of diet that is used as an input for simulations. The diet is converted to three main 

categories of macromolecules polysaccharide, oligosaccharide and amino acids. (h) CASINO was applied to study the 

effect of the diet on the gut microbiota composition of subjects that were classified based on their microbial gene 

richness. Simulations were conducted and the predictions were confirmed by metabolomics data performed for fecal 

and serum samples obtained from these subjects and new hypothesis were generated.  

The gene richness of the human gut microbiome has been analyzed for 123 non-obese and 169 

obese individuals based on the threshold of 480,000 genes (Le Chatelier et al., 2013). 45 obese and 

overweighed individuals from this study were subjected to energy restricted high-protein diet for 

6 weeks and to weight maintenance diet for another 6 weeks. The diet uptake was recorded before 

and after diet interventions for each individual. Among the 45 individuals 18 were grouped as low 

gene count (LGC) and 27 as high gene count (HGC). It was earlier shown that the dietary 

interventions resulted in different phenotypic responses based on the microbial gene richness of 

the individuals (Cotillard et al., 2013). Here we simulated the effect of the diet on the human gut 

microbiota composition at baseline and after the diet-induced weight-loss (6 weeks). We wanted 

to use CASINO to predict the contribution of the whole gut microbiota to the overall host 

metabolism as well as the contribution from each bacteria. Before metagenomics analysis identified 

six species dominated in all individuals (Cotillard et al., 2013).  Following the metagenomics we 

performed 16s rRNA qPCR on fecal samples obtained from the 45 individuals at baseline and after 

6 weeks to capture the quantitative data for the six species (Figure 9). 
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Figure 9 The effect of the 6 weeks diet interventions in HGC and LGC individuals. The abundance of the bacteria 

before and after diet interventions in HGC and LGC subjects are shown. 

In order to simulate the effect of the diet based on the abundant bacteria in LGC and HGC 

individuals, we used GEMs for B. thetaiotaomicron, B. adolescentis, F. prausnitzi, E. rectale and 

Lactobacillus reuteri, a representative of the Lactobacillus genus and obesity-associated species 

(Million et al., 2012). Using the GEMs for the abundant bacteria we used CASINO to simulate the 

effect of dietary intake on the human gut microbiota composition at baseline and after the diet-

induced weight loss (6 weeks) for each of the 45 subjects. Dietary information for each individual 

was recorded by a registered dietician and used to analyze the diets of the 45 individuals. The 

dietary macronutrients were computed and changes between the macronutrients at baseline and 

after 6 weeks of dietary interventions were calculated and used as inputs to CASINO for 

simulations. The model simulations predicted the profile of three SCFAs and 14 amino acids 

produced by the gut ecosystem as well as the contribution of each microbial species to the overall 

metabolite production by the ecosystem at baseline and after 6 weeks for each individual. Looking 

at prediction, we observed the level of SCFAs and amino acids were significantly reduced in 6 

weeks diet interventions and this reduction was greater for LGC individuals (Figure 10).    
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Figure 10 Predictions of SCFAs and amino acids for HGC and LGC subjects at baseline and after 6 weeks of 

diet interventions. The group of metabolites at the rights show the baseline predictions and at the left the week 6. The 

middle is the SCFAs predictions for baseline and week 6.    

In order to confirm our predictions on altered metabolite production by the gut ecosystem, we 

performed metabolome analysis of the 45 fecal samples obtained from the same HGC and LGC 

individuals at baseline and after 6 weeks of dietary intervention. The metabolomics data confirmed 

several of the predictions. It showed the decrease level of proline, glycine, serine, phenylalanine 

and tyrosine for all the subjects from baseline to week 6 while the reduction was higher for LGC 

subjects (Figure 11). Looking at phenylalanine predictions, the level of that for LGC subjects is 

higher at baseline compare to HGC and after 6 weeks of dietary intervention phenylalanine level 

was predicted higher for HGC subjects. This findings from predictions were in agreement with the 

fecal metabolomics. We performed as well serum metabolomics to evaluate the predictions that 

were not in agreement with fecal metabolomics, which may be is a result of absorption by the host. 

In addition to many metabolites that we found the correspondence between the predictions and the 

measured changes, we observed phenylalanine level was higher in LGC subjects at baseline and 

the level decreased after 6 weeks of diet intervention. Besides, the correlation between amino acids 

level in serum and bioclinical parameters revealed phenylalanine was positively correlated with 

variables insulin resistance and BMI (Figure 12). 
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Figure 11 Metabolomics analysis of fecal samples obtained from HGC and LGC subjects. The differences for 14 

detected AAs as well as butyrate are shown. Students- t-test was applied to detect significantly changed metabolites 

In the final step we tried to use the modeling approach to design a diet to improve metabolism of 

LGC individuals, which are assumed have a non-optimal gut microbiome metabolism. We 

performed the simulation through assumption that LGC subjects would enable to reach the optimal 

gut microbiome metabolism of HGC after 6 weeks of dietary intervention that are associated with 

an improved metabolic phenotype. Using the abundance of five different species B. 

thetaiotaomicron, B. adolescentis, F. prausnitzi, E. rectale, and L.reuteri to predict the relative 
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utilization of eight essential amino acids by LGC subjects at baseline and HGC subjects at week 6 

(Figure 13a). Through correlation of achieved pattern and amino acids in different food types, we 

identified LGC subjects should increase the consumption of e.g. dairy products, vegetables and 

fish while decrease e.g. bread and rice (Figure 13b).  

 

 

Figure 12 The serum metabolites were correlated with different parameters of HGC and LGC subjects. Fat 

mass was measured by biphotonic absorptiometry (DXA). MIP1b, macrophage inflammatory protein 1b; sCD14, 

soluble CD14; hsCRP, human sensitive CRP; HOMA-IR, homeostatic model assessment − insulin resistance = Math 

Eq; BMI, body mass index (kg/m2); Disse index = Math Eq; MIP1b: macrophage inflammatory protein 1b; hsCRP, 

human sensitive CRP; NEFA, non-esterified fatty acids. The color specifies the slope of correlation. 
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Figure 13 Model-based diet design to improve metabolism of LGC individuals. (a) The yellow circles 

depicts the consumption of eight amino acids by LGC at baseline and the blue ones are consumption of 

eight amino acids for HGC at week 6. (b) The figure shows the correlation between the required amino acids 

at baseline and week 6 with composition of amino acids in different food types. Subtract of improved 

correlation and baseline correlation the proposed pattern of increase or reduction of food for LGC at baseline 

to reach the optimal gut microbiota metabolism.   
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3.2.2.     Paper III: SIM mice – a tool to obtain basic and mechanistic understanding of the 

microbe-microbe interactions in the mammalian gut 

Here, we developed a mouse model colonized with ten representatives of the human gut microbiota, 

with known function relevant to human health microbiota. Here by the means of different omics 

analysis we study the respond of simplified intestinal microbiota (SIM) to changes in host diet. 

DNA from jejunum, ileum, caecum, colon and faeces of SIM mice were isolated and 16S rRNA 

quantitative PCR was performed to understand the distribution of colonized microbes along the 

intestinal tract and fecal. RNA was isolated from the SIM mice and sequenced to reveal the 

metatranscriptional of SIM mice fed with autoclaved chow diet. We generated as well 

metatranscriptome data for SIM mice fed with different diet and examine the respond of the SIM 

microbes to changes in host diet. We also generated metabolomics data on the plasma sample of 

SIM mice for different dietary pattern and compared them together and as well with GF mice to 

uncover the changes of metabolites in plasma of SIM and GF mice. 

The selected microbes process metabolic functions identified in the anaerobic food web, 

considering also possible cooperation via metabolic cross-feeding that likely occurring in the 

human gut (Table 3). In particular we included strains that have ability to break down complex 

dietary polysaccharides not accessible to the host (Bacteroides thetaiotaomicron, Prevotella copri 

and Ruminococcus bromii), consume oligosaccharides and simple sugars (Bifidobacterium 

adolescentis, Colinsella aerofaciens, Eubacterium hallii, Eubacterium rectale and Roseburia 

inulinivorans), reduce sulfate (Desulfovibrio piger). We included also bacteria identified to reside 

in the mucus layer and use the mucus as a source of carbon and energy (Akkermansia muciniphila 

and Bacteroides thetaiotaomicron). 

As the bacteria in the SIM microbiota are isolated from human feaces we further studied how the 

differences in the nutrient availability through the length of the GI tract and  SIM microbiota 

establishes through the length of the mouse gastrointestinal tract. We quantified the levels of each 

bacteria by 16S rRNA qPCR in the jejunum, ileum, cecum, colon and faeces of the SIM mice. We 

found out that (i) all bacteria from the SIM microbiota were established in each of the regions of 

the mouse gut, (ii) the levels of SIM bacteria gradually increased from jejunum towards the distal 

part of the gut and reached the highest levels in the faeces. The two Bacteroidetes species in the 

SIM community, Bacteroides thetaiotaomicron and Prevotella copri, colonize in high levels in all 

regions of the gut, while from the Firmicutes species only Roseburia inulinivorans was highly 

abundant. The poor establishment of Firmicutes species in the mouse gut and the enrichment in the 

Bacteroidetes is in agreement with previous findings (Wos-Oxley et al., 2012).   
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Table 3 Phylogenetic genome size of the members of the simplified intestinal microbiota. 

SIM- bacteria Phyla Genome size, MB Reference 

Akkermansia muciniphila  Verrucomicrobia 2.66 (Derrien et al., 2004) 

Bacteroides thetaiotaomicron  Bacteroidetes 6.29 (Martens et al., 2008; Xu 

et al., 2003) 

Bifidobacterium  Actinobacteria 2.09 (Marquet et al., 2009) 

Colinsella aerofaciens  Actinobacteria 2.83 (Kageyama and Benno, 

2000) 

Desulfovibrio piger  Proteobacteria 3.34 (Marquet et al., 2009) 

Eubacterium halli  Firmicutes 3.29 (Duncan et al., 2004) 

Eubacterium rectale  Firmicutes 2.44 (Duncan and Flint, 2008) 

Prevotella copri  Bacteroidetes 3.51 (Hayashi et al., 2007) 

Roseburia inulinovaris Firmicutes 4.05 (Duncan et al., 2006) 

Ruminococcus bromii  Firmicutes 2.25 (Ze et al., 2012) 

 

Next we used three different diets a standard chow diet (CHD - low in fat and high in plant 

polysaccharides), sucrose diet (ZFD - no fat, low in plant polysaccharides and high in sucrose) and 

high fat diet (HFD - low in plant polysaccharides, high in fat and sucrose). We found reduced 

number of bacteria in the SIM mice caecum after HFD feeding compare to CHD and ZFD fed 

mice. We quantified decreased caecum levels of bacteria such as Prevotella copri and 

Ruminococcus bromii, Bifidobacterium adolescentis, Roseburia inulinivorans, Eubacterium 

rectale and Colinsella aerofaciens when plant polysaccharides were omitted from the mouse diet, 

further supporting the extreme responsiveness of the gut microbiota to macronutrient intake. Other 

bacteria as Akkermansia muciniphila and Bacteroides thetaiotaomicron that have the ability to 

deplete complex glycan structures produced by the host (van Passel et al., 2011; Xu et al., 2007) 

were not affected by the absence or lower levels of plant polysaccharides in the mouse diet. 

Desulfovibrio piger was one of the few bacteria from the SIM microbiota, which levels in the 

caecum remain stable during the three dietary changes. (Rey et al., 2013). Unexpectedly, the 16S 

rRNA levels of the butyrate producer Eubacetrium hallii in the caecum of the SIM mice on HFD 

and ZFD were higher compare to SIM mice fed CHD.  We further measured the levels of caecum 

metabolites, including SCFAs (acetate, propionate and butyrate) and lactate and succinate in the 

SIM mice fed CHD, ZFD and HFD. The molar ratio of SCFAs in the caecum of the SIM mice on 

CHD diet was 70:39:10 (acetate:propionate:butyrate) (Figure 14), which is higher than what have 

been reported recently from our group conventionally raised mice (CONV-R) (Wichmann et al., 

2013). 
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Figure 14 Shift in metabolites in the caecum of SIM mice on chow diet (CHD), sucrose diet (ZFD) and high-fat 

diet (HFD). 

Meta-transcriptomic can be key supplement to metagenome analysis through identification of 

metabolic active profiles of gut microbiota members. Transcript abundance can uncover the 

response of microbial members to perturbation within the community. The application of RNA-

seq have been applied widely to microbial communities such as marine (Gilbert et al., 2008), soil 

(Baldrian et al., 2012) and human microbiota (Turnbaugh et al., 2010).    

Here we characterized the microbial gene expression of the SIM mice to unravel the activity of 

each ten member in response to diet changes. mRNA enriched samples of the caecal SIM 

microbiota at an average depth of 15 million paired-end reads per sample, and relative abundance 

in the form of counts per million (CPM) were calculated for each protein-coding gene. Then 

through the differential expression discovery task using edgeR (Robinson et al., 2010), three sets 

of two group differential comparison were performed. We compared the expression of SIM fed 

with HFD to CHD, ZFD to CHD and ZFD to HFD (Figure 15). P-values were corrected for multiple 

testing using adjustment method Benjamini & Hochberg and P-value adjusted were calculated. 

Afterward, we found there were 5765 genes significantly expressed genes in SIM microbiota fed 

with HFD compared to CHD (adj. P < 0.05).  
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Figure 15 Comparison of differentially expressed genes for 10 members of SIM microbiota. The inside circle is 

the genome coverage of generated RNA-seq data. The second circle is the differentially expressed genes of SIM fed 

with HFD compared to CHD, the third circle for ZFD to CHD and the outer one is for ZFD to HFD. 

Then we associated the genes to their KEGG orthologies (KO) to understand the active functions 

of them. Using the KEGG pathways associated with the Kos together with corrected P-values, we 

identified the differentially abundant Kos for each member of SIM microbiota. The glycolysis 

pathway was the one with major contribution from A. muciniphila, E. hallii, P. copri and D. piger 

when we compared the HFD to CHD. The responsible genes for 2,3-bisphosphoglycerate were 

highly expressed in A. muciniphila and E. hallii,while it was expressed significantly lower in P. 

copri. Fructose-bisphosphate aldolase classII as well has the same pattern. Another pathway that 

came out was galactose, which genes for α and β galactosidase were significantly expressed. The 

expression of genes were higher for A. muciniphila, B. thetaiotaomicron and lower for B. 
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adolescentis and P. copri. α- galactosidase is an enzyme that hydrolyzes ceramide trihexoside. We 

as well found peptidoglycan, fatty acid, glycerophospholipid, glycerolipid, amino and nucleotide 

sugar pathwyas contribute significantly (Figure 16).  

 

   

Figure 16 Two examples of contributed pathway with corresponding KOs and SIM members for comparison 

of HFD and CHD. 

 

To evaluate the impact of the cross-talk between SIM microbiota and diet on microbial-host co-

metabolism, we performed untargeted liquid chromatography - mass spectrometry (LC-MS) and 

gas chromatography - mass spectrometry (GC-MS) on plasma samples collected from the portal 

vein of the SIM mice fed CHD, ZFD and HFD. To discriminate between host and microbial derived 

plasma metabolites we included as control plasma samples from GF mice fed CHD, ZFD and HFD. 

We identified 17 metabolites associated with the SIM microbiota that significantly changed in the 

plasma metabolome of the SIM mice in respond to changes in diet. Interestingly, those metabolites 

have been linked mostly to lipid and amino acids metabolism, which suggest that introduction of 

SIM microbiota to the GF mice induced metabolic consequences to the host beyond the processing 

of polysaccharides.  
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3.3. Quantifying the metabolic changes of host-microbes 

3.3.1.     Paper V: Elucidating the interactions between human gut microbiota and host 

through metabolic modelling 

The symbiosis of host and gut microbiota were described in the introduction section. Here, we will 

discuss the using metabolic modeling of cell/tissue types in the human body and integration of 

specific models with gut microbes. The generic human metabolic models were initiated by 

Edinburgh human metabolic model (EHMN) (Ma et al., 2007) and Recon1 (Duarte et al., 2007) 

which mainly reconstructed based on bibliomic and includes the collection of reactions occur in 

human. After this more detailed and accurate models were reconstructed, like the human metabolic 

reaction (HMR) (Agren et al., 2012) and Recon2 (Thiele et al., 2013).These generic models were 

applied to understand better the human metabolism through mainly the network dependent analysis 

and data integration. Taking to account that metabolism each tissue in the human body is different, 

looking to tissue specific models could make lot of sense for data integration and hypothesis 

generation. It is therefore different algorithm were developed to reconstruct the cell or tissue 

specific models from generic model through using transcriptome and proteome data from the 

Human Protein Atlas (Agren et al., 2012; Fagerberg et al., 2014; Uhlen et al., 2010). These 

algorithms have been extensively reviewed in (Mardinoglu and Nielsen, 2015)  

Integration of relevant clinical data to the specific model made it possible for new hypothesis, 

therapies and design of new interventions. As well the metabolic modeling the interactions between 

tissues provide better understanding of different metabolic disorders and physiology of body. 

Towards this intercellular interactions between adipocytes, hepatocytes, and myocytes as the 

metabolically active human cell types has been studied (Bordbar et al., 2011). These interactive 

modeling were applied to study the metabolic variations and reaction activities.  

To this end, metabolic modeling of gut microbe-host symbiosis can as well help for better 

understanding the mechanisms and effect of microbes on human host (Figure 18). The interactions 

between the microbes, small intestine and colon can reveal the effect of microbiota on the 

metabolism of epithelial and enterocyte cells (Sahoo and Thiele, 2013). A metabolic model for 

small intestinal enterocytes has been generated and observed that metabolism of carbohydrates, 

amino acid, dietary fibers, and lipids were most occurred ones. Using the model the effect of 

american and balanced diet was studied. Through interacting one abundant gut microbe with the 

mouse generic model the systems-level characterization of a host-microbe metabolic symbiosis has 

been studied (Heinken et al., 2013). 

Considering the interaction between three bacteria in the gut from Paper I, the main products of the 

bacterial community are SCFAs: acetate, propionate, and butyrate. SCFAs are mainly absorbed by 

epithelial cells. The nutrient enters to the gastro0intestinal tract in categorizes of carbohydrates, 

proteins, and fats which some digested by host enzymes and indigestible ones by the microbiota. 

The available SCFAs in the portal vein can be taken up by liver. SCFAs can have impact on the 

mechanism of hepatocyte cells that regulate cholesterol levels by synthesizing primary bile acids 

and lipoproteins [chylomicrons, very low-density lipoprotein (VLDL), low-density lipoprotein 

(LDL), and high-density lipoprotein (HDL)] (Gabert et al., 2011). There are as well cross talks 

between myocyte, adipocyte and hepatocyte which each of them can get impact from the secreted 

products of microbes to portal vein. Investigation on interactions between organs is vital to 

overcome the complexity of metabolic modeling of host-microbe interactions. 
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Figure 17 Simplified interactions between three bacteria in gut microbiota and their crosstalk with other 

tissues.   

 

3.3.2.     Paper IV: Revealing the metabolic differences between germ free and 

conventionally raised mice through metabolic modeling of gut microbiota and its host 

Complex disorders such as obesity (Backhed et al., 2007; Turnbaugh et al., 2006), type 2 diabetes 

(T2D) (Karlsson et al., 2013), atherosclerosis (Karlsson et al., 2012), non-alcoholic fatty liver 

disease (NAFLD) (Henao-Mejia et al., 2012) and malnutrition, which appears at the opposite end 

of the spectrum (Smith et al., 2013; Subramanian et al., 2014), have been associated with the 

imbalances in the human gut microbiota. In order to gain a mechanistic insights about the 

contribution of the specific microbial populations in the development of such disorders, germ-free 

(GF) animals have been adopted for studying the association of the gut microbiota to disease 

pathogenesis (Ridaura et al., 2013). GF mice has been broadly used for investigating the effect of 

gut microbiota on host physiology. The differences between the GF and conventionally raised (CR) 

mice have been studied (Claus et al., 2008; El Aidy et al., 2013; Slack et al., 2009; Stappenbeck et 

al., 2002; Wostmann, 1981). Moreover, Larsson et al (Larsson et al., 2012) studied the response of 

the host induced by microbes along the gut in CR and GF C57Bl6/J mice and provided a detailed 

description for tissue-specific host transcriptional responses. 
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Here, in order to investigate the gut microbiota-induced transcriptional responses of the host 

metabolism, CR and GF C57Bl6/J mice were freely fed with autoclaved chow diet and mice were 

killed at 12 weeks of age. Small intestine and colon were removed and RNA was isolated from 

duodenum, jejunum, ileum segments of the small intestine, the proximal piece of the colon, liver, 

epididymal fat and subcutaneous fat, and microarray gene expression data was generated for these 

seven tissues. We identified significantly differentially expressed probe sets and metabolic genes 

by comparing gene expression profiles of tissues obtained from CR versus GF mice (Figure 19).  

 

Figure 18 Gene expression profiling of different tissues including duodenum, jejunum, ileum, colon liver, and 

subcutaneous fat, tissues obtained from both CR and GF mice obtained from CR and GF mice. Gene expression 

data for each tissue has been normalized independent than other tissues and significantly (Q-value<0.05) differentially 

expressed probe sets and metabolic genes in Mouse Metabolic Reaction database was presented in each analyzed 

tissue. 

During the identification of the significantly (Q-value<0.05) differentially expressed probe sets and 

metabolic genes, we corrected p-values for multiple testing by the Benjamini Hochberg method 

and calculated Q-values. Figure 20 shows the comparison between the differentially expressed 

metabolic genes of duodenum, jejunum, ileum, colon and liver tissues of CR and GF mice. Two 

genes were observed that differentially expressed in all tissues of CR compared to GF mice. 

Expression of Nicotinamide nucleotide transhydrogenase (Nnt) gene was higher and 

Ectonucleoside triphosphate diphosphohydrolase 4 (Entpd4) was lower in all five tissues of CR 

mice compared to GF mice. 
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Figure 19 The overlap between the significantly (Q-value<0.05) differentially expressed metabolic genes in 

duodenum, jejunum, ileum, colon and liver are presented. The significantly (Q-value<0.05) differentially 

expressed metabolic genes, Nnt and Entpd4 as well as the associated reactions to Nnt is presented. 

In the next step we developed MMR by using the mouse orthologs of human genes in HMR2.0.  

The resulting generic model includes 8,140 reactions, 3,579 associated metabolic genes to those 

reactions and 5,990 metabolites in eight different subcellular compartments. Previously, SILAC 

based proteomics data have been generated to analyze the expression of 7,349 proteins in 28 

different major C57BL/6 mice tissues (Geiger et al., 2013) and it covers the 2,030 of the protein-

coding genes in MMR. We reconstructed 28 tissue-specific GEMs, using proteomics data, MMR 

and tINIT algorithm (Agren et al., 2014). A total of 5,813 reactions, 4,574 metabolites and 1,838 

genes were shared across the tissue-specific GEMs of which 2,750 (47.3%) reactions, 3,001 

(65.6%) metabolites and 669 (36.4%) genes were common to all tissue-specific GEMs. GEMs for 

liver (iMiceLiver), adipose (iMiceAdipose), colon (iMiceColon) and small intestine 

(iMiceSmallintestine) by merging the GEMs for duodenum, jejunum and ileum tissues were 

incorporated with the differentially expressed genes between CR and GF mice tissues.  

Using network structure provided by iMiceSmallintestine and gene expression profiling of the 

small intestine segments (duodenum, jejunum and ileum) between CR and GF mice, we 

investigated on the changes in the expression of the genes interacting with Nnt (Figure 21A). We 

found that the expression of Glutathione reductase (Gsr) which uses NADPH as an electron source 

to reduce the glutathione disulfide (GSSG) back to GSH is also significantly (Q-value<0.05) higher 

in all three small intestine segments of CR mice compared to GF mice (Figure 21). The decreased 

synthesis of the GSH in the small intestine segments of CR mice may be due to the limited 

availability of the substrates including glutamate, cysteine and glycine. Eventually, we identified 

significantly (Q-value<0.05) differentially expressed genes linked to glycine (Figures 21B) and 

glutamate (Figures 21C) and found that there are metabolic differences in the utilization of these 

AAs between CR and GF mice. 
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Figure 20 Metabolic differences in the small intestine tissues of CONV-R and GF mice. A) Metabolic genes 

together with the associated reactions involved in the formation of glutathione (GSH) are shown. Significant changes 

associated with the B) glycine and C) glutamine are represented. 

Based on gene expression data, Nnt was significantly higher and Entpd4 was significantly lower 

expressed in the liver tissue of CR compared to GF mice based on microarray gene expression data. 

Expression levels of Nnt and Entpd4 in liver tissue obtained from CR and GF mice were validated 

by quantitative reverse transcription PCR. Higher Nnt expression in CR mice can be described with 

the response of liver tissue to the lower level of glycine required for the de novo synthesis of the 

GSH. HPV level of serine was measured, which can be utilized by the liver and converted to the 

glycine, and we observed that the level of serine was also significantly lower in CR mice compared 

to GF mice. 

In the colon tissue of CR mice the expression of the Gsta4, Gstk1, Gstp1 and Gstt1 that reduce 

GSH to oxidized glutathione is significantly high (Q-value<0.05) (Figure 22). Metabolic 

differences between the colon tissue of CR and GF mice by integrating the significantly 

differentially expressed genes to iMiceColon were also investigated. Accordingly, it was found 

expression of Arg2 involved in arginine metabolism as well as Ces1g, Aldh1a2 and Rbp4 involved 

in vitamin A metabolism is higher in the colon tissue of CR mice compared to GF mice. On the 

other hand, we found that Aldob and Aldh9a1 involved in glycolysis, Hmgcs1, Hsd17b7, Nsdhl 

and Sc4mol involved in cholesterol synthesis, Mgam and Sis involved in starch and sucrose 
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metabolism, Slc2a5, Slc2a9, Sord and Khk involved in fructose metabolism as well as Ace2 

transcription factor involved in th conversion of angiotensin were significantly lower in CR mice 

(Figure 22). Additionally, we found that the expression of the genes involved in the transport of 

AAs are significantly lower in the colon tissue of CR compared to GF mice. 

 

Figure 21 Metabolic differences in the colon tissue of CONV-R and GF mice. 

To understand the metabolic interactions between the gut microbiota as well as their interactions 

with the small intestine in CONV-R mice, we simulated the crosstalk between the two key species 

B. thetaiotamicron and E. rectale. We used the content of the autoclaved chow diet and considered 

assumptions regarding the utilization of the diet; maximum 40% of the total protein may be 

consumed by the bacteria (set as upper bound), 5% of the total protein is transferred to the colon 

tissue and the remaining proteins are consumed by the small intestine (Figure 23). We also assumed 

that 40% of the digestible and 5% of the non-digestible carbohydrates in the diet is also consumed 

by the bacteria in small intestine and 5% of the digestible carbohydrates is transferred to the colon 

tissue (Gibson and Roberfroid, 1995).  
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Figure 22 The differences in the utilization of proteins, carbohydrates, non-digestible carbohydrates and fates 

between the CR and GF mice is presented. 

We simulated the interactions and predict the utilization of AAs and secretion of SCFAs by the 

bacteria. Simulations predicts isoleucine, proline and valine are only consumed by the E. rectale, 

glycine, serine, alanine, cystine, glutamate, histidine, leucine, lysine, methionine, phenylalanine, 

threonine and tyrosine are utilized by both B. thetaiotamicron and E. rectale whereas arginine, 

aspartate and tryptophan are not consumed by neither of these bacteria (Figure 24). Using the 

outcome of bacteria simulations, we studied the effect of SCFAs into the metabolic functions of 

small intestine in CR mice. We set up the production of chylomicrons and HDL in the small 

intestine of GF as objective function using the content of the diet. In order to produce chylomicrons 

and HDL together in the small intestine GEM, their lower bounds were constrained to 20% of the 

maximum production and performed flux variability analysis for all up and down regulated 

reactions based on the small intestine gene expression data. Next, we increased the upper and lower 

bounds of the reactions associated with significantly differentially expressed genes in GF mice and 

used these expanded bounds for the reactions in the small intestine model of CR mice. 
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Figure 23 The amount of the glucose and AAs consumption for gut microbiota to optimize for their biomass 

and SCFAs production. 

We optimized for the production the chylomicrons and eventually compared the amount of 

chylomicrons and HDL produced by CR and GF mice. SCFAs produced by the bacteria were used 

as an additional input to the iMiceSmallintestine in CR mice and we predicted that lower levels of 

chylomicrons and HDL are secreted by CR mice compared to GF mice. Through the use 

iMiceSmallintestine, calculated the set of flux distribution and ransom sampling algorithm (Bordel 

et al., 2010) we identified reactions involved in fatty acid biosynthesis and oxidations are 

transcriptionally downregulated in CONV-R compared to GF mice (Figure 25). 

 

Figure 24 Transcriptionally up and downregulated reactions in CR and GF mice are identified.
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4.  Conclusion 
In Paper I: We reconstructed relevant GEMs for the predominant phylum in the human gut, and 

we captured the main metabolic functions of the gut microbiome. We reconstructed GEMs of three 

key species; iBth1201 (B. thetaiotaomicron), iEre400 (E. rectale) and iMsi385 (M. smithii), which 

are relevant representatives of three phyla in the human gut (Bacteroidetes, Firmicutes and 

Euryarchaeota). We mathematically formalised two different scenarios to which the modeling of 

microbial communities can be applied. In the first case, the composition of the diet and the species 

abundances in the microbiota is known and constitute the input of the model. In this scenario, we 

aim to predict the profile of compounds produced by the microbiota and hence represent 

metabolites that can be taken up by the host. We refer to this simulation problem as the α-problem 

and a solution is found by minimising the substrate uptake rate. Alternatively we might be 

interested in predicting the abundances of the different species in the microbiota as a function of 

the diet. We refer to this problem as the β-problem. We further demonstrate that by integrating the 

topological information provided by GEMs with diet compositions, genomic and transcriptomic 

data, community metabolic modeling provides a mechanistic interpretation for statistical findings 

provided by metagenomics, and this leads to improved understanding of the relationships between 

diet, microbiota and disease and hereby enables a rational design of prebiotic and probiotic 

treatments. 

In Paper II: We describe how the genome scale metabolic model (GEM) for the predominant 

human gut microbiota can elucidate the interactions between the human gut microbiota and its host. 

Focusing on metabolic interactions between the diet, gut microbiota and host metabolism, we 

hereby demonstrated that CASINO has excellent predictive power. As we demonstrated CASINO 

can also be used to predict dietary changes required in order to ensure a certain phenotype of the 

gut microbiome, here represented as a specific profile of consumption of 8 essential amino acids. 

CASINO could be used even further to simulate the impact of different diets on the production of 

different SCFAs and amino acids by the gut microbiome, and if a desired profile could be identified 

this would allow for computational evaluation of a suitable diet for subjects with a certain specified 

gut microbiome. As the gut microbiome composition is likely to change in response to changes in 

the diet, such predictions may have to be followed up with further metagenomics analysis and 

recalculations, but eventually, as more information is acquired about the impact of diet on gut 

microbiome composition, we would expect that CASINO can be used even to simulate how the gut 

microbiome may change in response to dietary changes, and hence a full predictive analysis can be 

performed. The modeling could quantitatively describe altered faecal amino acid levels in response 

to diet interventions. Our approach can also be used for identifying beneficial bacteria for human 

health and can be used for the treatment of metabolic disorders that are associated with gut 

microbiota. For instance, malnourished individuals who lack digestive enzymes due to the absence 

of certain microbes in their gut (Subramanian et al., 2014) can be determined and appropriate 

probiotics can be designed specifically for improving the overall metabolism in these subjects. We 

are therefore confident that CASINO will be a valuable tool for enriching the information content 

provided by gut metagenome analysis, and hereby advance our understanding of how this important 

metabolic organ contributes to disease development.  

In Paper III: We developed a mouse model colonised with ten representatives of the human gut 

microbiota, with known function relevant to human health microbiota. Here, by means of different 

omics analyses, we study the response of simplified intestinal microbiota (SIM) to changes in the 

host diet. DNA from the jejunum, ileum, caecum, colon and faeces of SIM mice were isolated and 
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16S rRNA quantitative PCR was performed to understand the distribution of colonised microbes 

along the intestinal tract and faeces. RNA was isolated from the SIM mice and sequenced to reveal 

the metatranscription of SIM mice fed with an autoclaved chow diet. We also generated 

metatranscriptome data for SIM mice fed with a different diet and examine the response of the SIM 

microbes to changes in the host diet. We also generated metabolomics data on the plasma samples 

of SIM mice for different dietary patterns and compared them together with GF mice to uncover 

the changes in metabolites in the plasma of SIM and GF mice 

In Paper IV & V: We created a generic Mouse Metabolic Reaction GEM (MMR) and generated 

tissue-specific GEMs for mice primarily based on proteomics data as well as the significantly 

differentially expressed genes between CONV-R and GF mice. We investigated the metabolic 

differences between CONV-R and GF mice using global gene expression profiling of the host 

tissues and the network topology provided by the tissue GEMs. Based on gene expression data, we 

found that the gut microbiota effect the host amino acid (AA) metabolism, which lead to 

modifications in glutathione metabolism. We validated our GEM-based predictions based on gene 

expression data by generating metabolomics data, and comparing the level of the metabolites in 

the HPV of the CONV-R and GF mice. Taken together, we found that the levels of the glycine and 

serine as well as the N-acetylated form of these two AAs that may be taken up by the liver tissue 

and used in GSH synthesis were significantly lower in the HPV of the CONV-R mice compared to 

GF mice. Hence, we observed that the expression of Nnt is increased in the liver tissue of CONV-

R mice, potentially caused by the limited availability of the glycine used as a substrate in the GSH 

de novo synthesis. Moreover, we observed that the liver and colon tissue of CONV-R mice also 

responded to the lower level of glycine by higher expression of Nnt, and this indicated that the gut 

microbiota regulates AA metabolism not only in the small intestine but also in the liver and colon 

tissues. We investigated the global metabolic differences between the liver tissue of the CONV-R 

and GF mice, and found that the expression of the genes involved in the uptake of glucose, and 

biosynthesis of cholesterol and bile acids was significantly lower in CONV-R     mice.
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5.  Future perspectives 
Most current studies on human gut microbiome are focused on the metagenomics, 

metatranscriptomics and metaproteomics methods. Without prior information of the single 

microbes within the community, challenges in understanding the community still remain. This prior 

information plays a key role in bottom-up approaches. The concept of community systems biology 

is very much connected to progress in single cell sequencing studies, since the draft genome of 

single organism is a necessary input to construct detailed models, so they can accurately predict 

the single organism phenotype and hereby unravel their capabilities in the community. Another 

obstacle in the modeling approach that has to be addressed in the future is the spatial organization 

of microbial community that restricts the understanding of complex interaction between members 

of community. To overcome this, imaging mass spectrometry technique can be employed on 

microbial communities (Watrous and Dorrestein, 2011). 

Despite all the varied applications of GEMs in biological studies, the field of reconstruction of 

GEM is still Imprecise. Most of the developed GEMs in different studies contain primary 

metabolism of the target organism and they hardly can be applied to different levels of systems 

biology studies. The proposed cellular objective is another limitation in CBM using GEMs. Most 

of the objectives are based on the simplification of the actual cellular process. For current studies 

the questions like “What kind of objective functions can give the best solution?” Which should be 

complemented by “what are the most relevant objectives and how can we evaluate them?” This 

question is more relevant when we want to perform CBM on tissue specific GEMs as well as the 

global objective function for the microbial communities and their interactions with their host. 

CASINO, OptCOm, COMMET and such methods are initial steps towards establishment of a 

workflow to predict deep capabilities of microbial communities and their interactions within the 

host.  

Going back to the scope of this thesis and considering that one day we could construct 

comprehensive GEMs together with well-established methods and evaluate objective functions, it 

is clear that GEMs for additional species may have to be added in the future, in particular if one 

wants to study more specific bioconversions, e.g. related to bile acids and vitamins. It seems the 

future of the gut microbiome research field is pulled hardly towards identification of new possible 

drugs that can modulate the gut microbiome. Through applying drug discovery and different novel 

bioprocess engineering, our microbes and their mediated metabolites have become new targets for 

small molecule drugs. It will be important to develop workflows that can be employed to 

understand the effect on human health in different clinical conditions of the deletion or over 

expression of individual gene or gene sets in the gut microbiome, either though altering the 

abundance of species or the level of metabolites they produce. Here GEMs can assist and be used 

for design just as they have been recruited for metabolic engineering and the results presented in 

this thesis may therefore hopefully allow for new avenues in future modulation of the gut 

microbiome with the objective to develop new strategies for treating human diseases.  
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