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SYSBIOMICS of Aspergilli: SYStems Biology, BIoinformatics and OMICS analysis of 

Aspergilli cell factories  

Wanwipa Vongsangnak 

Systems Biology, Department of Chemical and Biological Engineering, Chalmers University 

of Technology 

 

Abstract 

 

Aspergilli represent a group of filamentous fungi that plays a key role in industrial 

biotechnology, and as human, animal and plant pathogens. Here three Aspergillus species, 

namely Aspergillus oryzae, Aspergillus niger and Aspergillus nidulans are considered. These 

three species serve as working horses in industrial production of enzymes and chemicals and 

as key models for basic scientific work. Due to their wide applications, it is valuable to gain 

understanding of their metabolism, regulation and evolution with respect to genotypes and 

phenotypes, as this may lead to improved industrial fermentation processes for desired 

product formation (e.g. enzymes). We therefore applied three approaches for this 

investigation, namely SYStems biology, BIoinformatics and OMICS analysis 

(SYSBIOMICS). Firstly, we developed BIoinformatics methods to improve the genome 

annotation of A. oryzae and this improved annotation was used to reconstruct a high quality 

genome-scale metabolic network that could be used for mathematical modeling of the 

physiology and for OMICS data integration, which are the core of SYStems biology. 

Secondly, we designed a tri-Aspergillus DNA microarray chip to monitor the global 

regulation response at the transcriptional level.  This DNA chip has been exploited to reveal 

conserved regulatory responses through evolution in the three aspergilli in response to change 

in carbon source. This resulted in mapping of key regulatory points of metabolism in these 

fungi, and it showed that SYSBIOMICS analysis of transcriptional data can lead to 

reconstruction of how carbon metabolism is regulated. Lastly, we also applied the 

SYSBIOMICS concept to identify possible key players/targets associated with protein 

production in a high producing strain of A. oryzae. This analysis may enable diagnosis and 

improvement of industrial process of protein production. In conclusion, through a number of 

studies, it has been demonstrated in this thesis that SYSBIOMICS can find wide applications 

in industrial biotechnology and assist in improving industrial process required for sustainable 

production of enzymes and chemicals in the future.  

 

Keywords: Aspergilli, Bioinformatics, Omics analysis, Systems Biology 
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Chapter 1 

 

1.  Introduction 
 

SYSBIOMICS is a novel term defined from this Ph.D. study. It is an abbreviation of three 

terms: SYStems biology, BIoinformatics, and OMICS analysis.  My definition of 

SYSBIOMICS is a systematic study of biological systems by integration of bioinformatics 

and omics analysis. Today the availability of bioinformatics techniques and tools as well as 

multi-level omics data of different aspergilli has allowed for systems studies of these fungi.  

 

Aspergillus belongs to a group of filamentous ascomycete fungi that plays a key role as being 

of biotechnological importance. Particularly, it is illustrated by the use of A. oryzae in 

fermentation industries. A. oryzae has been applied for hundreds of years for the production of 

soy sauce, miso and sake with safe use. It can be used for large-scale production of enzymes 

and other proteins. Nowadays the use of A. oryzae has been facilitated in modern 

biotechnology.  

 

Currently, there is much interest in SYSBIOMICS of A. oryzae and comparative analysis to 

other important Aspergillus species (e.g. A. niger as a citric acid producer and A. nidulans as a 

gene regulation model organism) as it is expected that this may lead to improve industrial 

fermentation processes, but also to enhance our understanding of the context of cellular 

metabolism, regulation and evolution and hereby assist us to further improve strains and 

production processes. Today the genome sequencing and bioinformatics in aspergilli have 

been established. It is followed by a more-gradual process of genome annotation in order to 

identify all the genes and their functions in biological processes as done for several other 

organisms. As we know, genome sequencing and bioinformatics in different organisms have 

resulted in a revolution in biology including development of many new experimental 

techniques that enables analysis at the genome-scale.  Moreover, mathematical analysis, 

computational tools and information contents obtained in experimental biology are combined. 

These new approaches can be applied for understanding biological processes in the field of 

basic biology. However, these tools have been difficult to apply in industrial processes. A 

main reason is that most systems biology and bioinformatics algorithms have not been 

developed for industrial biotechnology. Therefore, the objective of this study is to develop 

systems biology tools and bioinformatics methods aiming at the construction of a genome-

scale metabolic model of A. oryzae and further use the model for high-throughput omics data 

analysis from industrial fermentations for improved strains and processes. The knowledge 

accumulated in SYSBIOMICS approach can be further applied in metabolic engineering field 

to rationally enhance product formations and cellular properties of the producing organism. 

Therefore, the SYSBIOMICS approach applied throughout this study has a broad impact on 

the field of systems biology and metabolic engineering of filamentous fungi, and it will lead 

to a substantial improvement in our understanding of the important cell factory A. oryzae and 

related fungi. An overview of the SYSBIOMICS approach applied throughout this Ph.D. 

study is presented in Figure 1.1. 
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Figure 1.1 An applied SYSBIOMICS approach for Aspergillus research 

1.1 Ph.D. thesis structure 
 

My Ph.D. study has resulted in one book chapter and several published research articles and 

manuscripts submitted for publications. The thesis is divided into two parts. The first part is 

an extended summary describing the overall work during this study: introduction of the thesis, 

literature review, description of applied methods, illustration of obtained results and 

discussion, and conclusions drawn. The second part contains six research articles that are 

based on the results of this study, which are published or submitted for publication to 

international journals. The extended summary starts with an overview and broad application 

of aspergilli as well as an introduction to Aspergillus as efficient microbial cell factory. 

Chapter 2 gives an illustration of the central carbon metabolism and linking it to protein 

production. Chapter 3 gives an overview of SYSBIOMICS approach applied in this study. 

Moreover, we describe application of SYSBIOMICS for three case studies. The first case 

study presented in Chapter 4 shows an improved annotation through development of 

genome-scale metabolic model for A. oryzae. This chapter describes how bioinformatics, 

systems biology and metabolic engineering tool can be combined and how it is provided 

genotypic and phenotypic relationship. In addition, it discusses the results of simulation and 

validation of the A. oryzae metabolic model at various growth conditions (see full details in 

Paper 1). Chapter 5 represents the second case study which summarizes the results and 

discussion from Paper 2, 3, 4 and 5. In this chapter, the first part is a description of growth 

physiology for three Aspergillus species (i.e. A. oryzae, A. niger and A. nidulans) on four 

different carbon sources.  The second part describes comparative transcriptomics of three 

Aspergillus species across four different carbon sources. The third part describes analysis of 

genome-wide co-expression and co-evolution of aspergilli. Chapter 6 provides the third case 

study which describes how to identify possible key players/targets for protein production (see 

full details in Paper 6). This chapter discusses growth physiology and comparative 

transcriptome results of two different A. oryzae strains (i.e. α-amylase high producer and wild 

type). 
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Chapter 2 

 

2. Aspergilli 

2.1 An overview and broad application 
 

The genus Aspergillus belongs to a group of filamentous ascomycete fungi that plays an 

important role in the ecosystem, involved in decomposing natural organic matter [1]. This 

genus comprises approximately 180 species [2], of which several species are human, animal 

or plant pathogens and several other species play an important role in the biotechnological 

industry for the production of chemicals, enzymes and drugs [3]. The biotechnological 

importance is illustrated by the use of A. oryzae for production of fermented food products. It 

has been attributed with Generally Regarded As Safe (GRAS) status by the U.S. Food and 

Drug Administration (FDA) [4] and its safety has also been supported by the World Health 

Organization (WHO) [5]. Today, A. oryzae is also used as a microbial cell factory for large 

scale production of industrial enzymes (e.g. amylases, proteases, and other hydrolytic 

enzymes) and heterologous protein productions [6, 7]. Of other relevant aspergilli can be 

mentioned, A. niger that is used for organic acid production (e.g. citric acid) [8] and large 

scale production of industrial enzymes (e.g. glucoamylase) [9], A. nidulans that is an 

important model organism for studying gene regulation and cell biology [10], Aspergillus  

sojae that has been used throughout Asia for fermented foods (e.g. koji foods) and beverage 

processes [11], Aspergillus terreus that is used for production of the cholesterol lowering 

agent lovastatin [12] and for itaconic acid production [13], and Aspergillus awamori that is 

used for protein production [14]. Clearly, these different Aspergillus species play a key role as 

microbial cell factories for different industries such as the food industry, the alcohol beverage 

industry, and the pharmaceutical industry.  

 

Some Aspergillus species are causative agents of opportunistic infections in man, e.g. 

Aspergillus fumigatus that is the most common pathogenic mould in humans and animals, 

which may cause diseases that range from allergies to life-threatening diseases [15]. 

Furthermore, Aspergillus clavatus and Aspergillus fischeri (Neosartorya fischeri) which are 

close relatives to A. fumigatus, are also common fungal pathogen in the US. A. clavatus is 

rarely pathogenic, although it is potently allergenic. A. clavatus can produce patulin [16], a 

substance which may be associated with disease development in humans and animals. A. 

fischeri is an extremely rare pathogen which can cause keratitis and possibly pulmonary 

aspergillosis in transplant patients [17]. Besides human and animal pathogens, additional 

Aspergillus species are plant pathogens (e.g. Aspergillus aculeatus) and toxin producers (e.g. 

Aspergillus flavus, Aspergillus parasiticus, and Aspergillus carbonarius). A. flavus and A. 

parasiticus are aflatoxin producers, which are among the most toxic natural compounds that 

exist [18, 19]. A. carbonarius is an ochratoxin producer resulting in food spoilage. Table 2.1 

summarizes the impact of different Aspergillus species on society. 
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Table 2.1 The biotechnological importance by different Aspergillus 

Aspergillus species Impact Biotechnological importance 

A. oryzae Positive Fermented food and industrial enzyme 

A. niger Positive Citric acid, glucoamylase and heterologous enzyme 

A. nidulans Positive Gene regulation model and cell biology 

A. terreus Positive Cholesterol lowering agent and itaconic acid 

A. awamori  Positive Protein production 

A. fumigatus  Negative Pathogenic mould in human and animal 

A. clavatus Negative Pathogenic mould in human and animal 

A. fischeri Negative Pathogenic mould in plant and human 

A. aculeatus Negative Pathogenic mould in plant 

A. flavus Negative 
Pathogenic mould in plant, human and animal and 

aflatoxin producer 

A. parasiticus  Negative Aflatoxin producer 

A. carbonarius Negative Ochratoxin producer caused in food spoilage 

   

 

2.2 Aspergillus as efficient microbial cell factory 

2.2.1 Enzyme production and global market 
 

Currently, it is estimated that there are more than 1000 enzymes [20] that have industrial 

relevance and a fraction of these are currently being produced as mono-component enzymes 

(http://www.report2008.novozymes.com). These enzymes play an important role in the 

manufacture of many different products, including detergents, foods, animal feeds and 

cleaning agents. Recently, according to an updated technical market research report, Enzymes 

for Industrial Applications (BIO030E) from BCC Research (www.bccresearch.com), the 

global market for industrial enzymes increased from $2.2 billion in 2006 to an estimated $2.3 

billion by the end of 2007. The market is expected to increase to over $2.7 billion by 2012 

based on three main application sectors: technical, food and animal feed enzymes as shown in 

Figure 2.1. Enzyme production is dominated by a few leading companies, with Novozymes 

A/S as an undisputable market leader and having an overall global market share that 

developed slightly positively in 2008, ending at approximately DK 16 billion with increased 

market sizes on technical and food enzymes while there was a slight decline in the market 

share of animal feed enzymes (http://www.report2008.novozymes.com). Table 2.2 

summarizes some important industrial enzymes produced by Aspergillus species across these 

three sectors. 
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Figure 2.1 Global market of industrial enzymes based on three application sectors 

($Millions) 

 

Table 2.2 Some important industrial enzymes produced by Aspergillus species 

Enzyme name Application Sector Producer 

 TE FE AFE  

α-amylase × ×             × A. oryzae, A. niger 

γ-amylase × ×             × A. oryzae, A. niger 

Glucoamylase × ×             × A. oryzae, A. niger 

Catalase × ×  A. niger 

Cellulase × ×             × A. niger, A. sojae 

α-galactosidase × ×              A. niger 

Lactase × ×  A. oryzae, A. niger 

Inulinase × ×  A. niger 

β-glucanase × ×             × A. oryzae, A. niger 

Glucose oxidase × ×  A. niger 

Hemicellulase × ×              A. oryzae, A. niger 

Invertase × ×  A. oryzae, A. niger 

Lipase × ×  A. oryzae, A. niger 

Peroxidase × ×  Aspergillus spp. 

Pectinase × ×              A. niger 

Pectin esterase × ×  A. niger 

Protease × ×  A. flavus, A. niger 

Proteinase × ×             × A. oryzae 

Tannase  ×  A. oryzae, A. niger 

Xylanase × ×             × A. niger 

Three application sectors: Technical Enzyme (TE), Food Enzyme (FE), Animal Feed Enzyme 

(AFE) 
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2.2.2 Utilization of different carbon sources 

Aspergillus basically can utilize a wide variety of carbon sources. This advantage provides 

increased flexibility in the design and improves the economic feasibility of industrial 

fermentation process. The major source of carbon and energy for Aspergillus is derived from 

carbohydrates such as disaccharide (C12), pentose (C5), and hexose (C6). Usually hexose, such 

as glucose, is the favorable carbon source due to the high efficiency in the uptake and 

metabolism of this sugar. Pentose such as xylose is less favorable, but still filamentous fungi 

can metabolize it quite efficiency. The disaccharide maltose is also a preferred carbon source 

in Aspergillus, however it has to be hydrolyzed before it can be metabolized, either 

intracellularly or extracellularly. This hydrolysis is catalyzed by enzyme such as maltase (α-

glucosidase). Besides of the carbon sources as mentioned earlier, Aspergillus can also use 

glycerol (C3) as a carbon source. In this study, these four different carbon sources have been 

used to investigate growth physiology and comparative transcriptome analysis in three 

Aspergillus species (i.e. A. oryzae, A. niger and A. nidulans) as discussed later in the thesis 

(Chapter 5). 

 

2.2.3 Central carbon metabolism through amino acid synthesis 
 

The central carbon metabolism primarily involves the glycolysis pathway, the pentose 

phosphate pathway (PPP) and the tricarboxylic acid (TCA) cycle that serve the purpose of 

converting sugars to Gibbs free energy and precursor metabolites that are required for 

biomass synthesis, including all amino acids needed for protein synthesis.  

 

An illustration of how the 20 amino acids are derived from precursor metabolites that are 

intermediates in the glycolysis, the PPP and the TCA cycle is given in Figure 2.2. Amino 

acids derived from intermediates of the glycolysis pathway are glycine, serine and cysteine 

(using 3-phosphoglycerate as a precursor), alanine, valine and leucine (using pyruvate as a 

precursor). Amino acids formed from intermediates of the PPP are phenylalanine, tyrosine, 

tryptophan (using erythrose-4-phosphate and phosphoenolpyruvate from the glycolysis as 

precursors) and histidine (using ribose-5-phosphate as a precursor). The amino acids that are 

derived from intermediates of the TCA cycle are aspartate, asparagine, methionine, threonine, 

isoleucine (using oxaloacetate as a precursor). Furthermore, glutamate, glutamine, proline, 

arginine, and lysine are formed using α-ketoglutarate as a precursor. Limitation in any of 

these precursors will obviously influence the formation of the corresponding amino acids and 

hereby protein synthesis. Oxaloacetate and α-ketoglutarate are formed in the TCA cycle and 

are serving as building blocks for 10 amino acids. Therefore the limitation of these precursors 

will have a serious impact on protein synthesis. 
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Figure 2.2 Central carbon metabolism and amino acid synthesis from using glucose as a 

carbon source.  

 

2.2.4 Protein production by genetic engineering 
 

In order to improve protein production from microbial cell factories, it is important to 

consider molecular mechanisms. In the last decade, one successful method for improving 

protein production was genetic engineering techniques. Based on these techniques, new 

strains of microorganisms are constructed that can produce desired products (e.g. protein, 

metabolite or antibiotic) in high amounts and with few by-products is the core of 

biotechnology. Such strains can be obtained by the use of recombinant DNA technology for 

targeted introduction of genetic changes, as exemplified by the construction of different 

Aspergillus strains that produce industrial enzymes. One way to increase the productivity of a 

given enzyme is to introduce extra copies of the gene encoding the product (a protein). An 

example is to increase the number of genes encoding an endogenous gene, e.g. the gene 

encoding for α-amylase in A. oryzae. In chapter 6 is shown a case study of the growth 

physiology and gene expression study of an A. oryzae recombinant strain that contains 

additional copies of the homologous α-amylase gene.  
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Chapter 3 

 

3. SYStems biology, BIoinformatics and OMICS analysis (SYSBIOMICS) 

of Aspergilli 
 

This chapter describes SYSBIOMICS approach applied throughout this study (See Figure 

3.1). The chapter gives an overview of SYSBIOMICS in aspergilli. In the following, three 

chapters are given three case studies of SYSBIOMICS. The details presented in this chapter 

have formed the basis of a recently published book chapter [21]. The general idea of 

combined omics analysis (i.e. genomics, transcriptomics, proteomics and metabolomics), 

bioinformatics and systems biology (i.e. genome-scale metabolic models) of aspergilli is 

presented. As mentioned this study involved several applications of the SYSBIOMICS 

approach, and these applications are divided into three case studies, which are described in the 

following three chapters (chapter 4, 5 and 6). The first case study (chapter 4) shows strategies 

to perform improved genome annotation (e.g. gene prediction and functional assignment). It 

also illustrates how to use a systems biology approach to reconstruct a metabolic network and 

how to apply metabolic engineering tool (i.e. Flux Balance Analysis) to perform metabolic 

modeling. The second case study (chapter 5) shows how SYSBIOMICS can be used to 

analyze data from growth of aspergilli on four different carbon sources, and hereby gain 

information on how the different carbon sources effect the cellular metabolism and based on 

this reveals new insight into transcriptional regulation in Aspergillus species. In this part, the 

focus is on A. oryzae but with comparative transcriptomics analysis with two other important 

species (i.e. A. niger and A. nidulans). The last case study (chapter 6) demonstrates the use of 

SYSBIOMICS for analyzing protein production by A. oryzae.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



SYSBIOMICS of Aspergilli 2009 

 

9 

 

 

 

 

SYSBIOMICS APPROACHES

Overview

Omics analysis Bioinformatics Systems Biology

A

Application
B

Annotation of genome sequence

ATCG

Genome-scale metabolic modeling

A. oryzae

Gene prediction

Functional assignment

Model reconstruction

FBA formulation

Model  validation

A. oryzae

A. niger

A. nidulans

Phenotypic charaterization,

transcriptome and data analysis

O2 pH T

Different carbon metabolism and regulation 

in Aspergillus

O2 pH T O2 pH T O2 pH T O2 pH T

Glucose MaltoseXylose Glycerol

Genomics

Transcriptomics

Proteomics

Metabolomics

Genome-scale metabolic 

models

Results and Discussion

Summary Full details

Chapter 4 Paper 1 

Chapter 5 Paper 2, 3, 4, 5

Chapter 6 Paper 6 
A. oryzae

Cell factory for protein production

Strains

Glucose

Maltose

C
a

rb
o

n
 s

o
u

rc
e

s

Biomass

Enzyme 

activities

Transcriptome profiles Flux calculations

R
IB

4
0

A
1

5
6

0
A

1
5

6
0

A
1

5
6

0
B

O
1

F
G

S
C

-A
4

CF1.1

    

Figure 3.1 A flow diagram showing an overview (A) and application (B) of SYSBIOMICS 

approach applied throughout this study and how different elements are connected to the 

different chapters and to the corresponding papers. 
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3.1 Omics analysis 

The availability of multi-level omics data of aspergilli has allowed for systems studies of 

these fungi, and in recent years there have been several studies on the use of omics 

technologies for studies of different Aspergillus species. In the following, we present a brief 

history of high-throughput omics technologies, namely genomics, transcriptomics, 

proteomics, and metabolomics as well as review studies where these technologies have been 

applied to Aspergillus. 

 

3.1.1 Genomics 

In the last decade of the 20
th

 century there was a paradigm shift in the biological sciences. The 

focus of research shifted away from the study of individual genes to genomes. This scientific 

shift was driven by the availability of complete genomic sequences. Today, deciphering the 

complete sequence of smaller genomes such as bacteria is fairly straight forward. However, 

determining and structuring the genome sequences of more complex microorganisms with 

large genome sizes and complexities are still a considerable challenge [22], and  genomics 

research on fungi has therefore obtained much focus [23]. The first sequenced fungus was the 

baker’s yeast, Saccharomyces cerevisiae [24, 25]. Shortly after the S. cerevisiae genome was 

released, fungal workshops were held that discussed initiating genome projects on 

filamentous fungi [23]. Herein, the details for genome sequencing projects of several different 

Aspergillus species are discussed. 

 

Genome sequencing projects 

The history of Aspergillus sequencing projects started in 1998, where Cereon Genomics 

(Monsanto) sequenced the genome of A. nidulans [23] strain FGSC-A4 using the whole-

genome shotgun approach with a three fold (3x) coverage. The sequence was, however, firstly 

released for public use several years later. A few years afterward, the A. nidulans genome was 

further sequenced with a thirteen fold (13x) coverage and here the Cereon data was 

incorporated. This complete genomic sequence was released in 2003 by the Whitehead 

Institute/MIT Center for Genome Research, now the Broad Institute. The size of the A. 

nidulans genome is approximately 30.1 Megabases (Mb), and it is organized in 8 

chromosomes [26]. Parallel to this work, a group of scientists decided to accelerate the 

developments in fungal genomics. The Fungal Genome Initiative (FGI) agenda was 

established with the overall aim of sequencing several key fungal species [27]. The first White 

paper was submitted to the National Human Genome Research Institute (NHGRI), and it was 

here proposed to sequence many fungal species. Three Aspergillus species, namely A. 

nidulans FGSC-A4, A. flavus NRRL 3357, and A. terreus NIH 2624 were in the initial 

sequencing list [28], but several other genome sequencing projects in Aspergillus species have 

been initiated in recent years. For instances, the sequencing project of the genome of A. 

fumigatus strain Af293 was begun by both the Wellcome Trust Sanger Institute and TIGR, 

and 29.4 Mb of sequence data distributed on 8 chromosomes was obtained [29]. Three 

different strains of A. niger were completely sequenced by three institutes, namely Gene 

Alliance/DSM, Integrated Genomics/Genencor and the Joint Genome Institute (JGI). First, the 

availability of a completed genome sequence for A. niger strain CBS 513.88 was announced 

in a press release by Gene Alliance/DSM and published some years later. The genome size of 

A. niger strain CBS 513.88 is 33.9 Mb and consists of 8 chromosomes [30]. Thereafter the 

genome of A. niger strain ATCC 9029 was sequenced [31] by Integrated Genomics, however, 

only with a 4x coverage and approximately 32 Mb of genome size. In the mean-time, the Joint 

Genome Institute (JGI), with funding support from the U.S. Department of Energy (DOE), 
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undertook to complete the genome sequence of A. niger strain ATCC 1015 with 34.9 Mb and 

a final 8.9x coverage, and these data were publicly released [31]. Sequencing of the genome 

of A. oryzae strain RIB 40 was initiated at the National Institute of Advanced Industrial 

Science and Technology (AIST), Japan. The project was extended from 1998 until 2001 and 

was carried out by the collaboration with the Japanese National Institute of Technology and 

Evaluation (NITE) and other members of the A. oryzae Genome Analysis Consortium [32]. 

The complete genome sequence was publicly released in 2005 with a 9x coverage. The total 

A. oryzae genome size is 37.2 Mb, and it consists of 8 chromosomes [33]. A. terreus clinical 

strain NIH 2624, which has been reported to be a potential human pathogen causing 

aspergillosis, was chosen by the Steering Committee of the Fungal Genome Initiatives (FGI) 

for genome sequencing. Currently, the completed genome sequence of the A. terreus clinical 

strain has been finished. It was publicly released in 2005 with a 11x coverage by the Broad 

Institute. The genome size of A. terreus strain NIH 2624 has been estimated to be about 29.3 

Mb distributed over 8 chromosomes [34]. In addition to sequencing of the A. terreus clinical 

strain, the genome sequence of the A. terreus industrial strain ATCC 20542 is in the process 

of being sequenced by the Microbia company [35]. For A. flavus strain NRRL 3357, a 

sequencing project was carried out through a collaboration project between TIGR, University 

of Oklahoma and United States Department Of Agriculture/Agricultural Research Service 

(USDA/ARS) [36]. The USDA/NRI Microbial Genome Sequencing Project provided funding 

for whole genome sequencing of A. flavus. The size of A. flavus’s genome is approximately 

36.3 Mb with a 10x coverage [36, 37]. Last but not least, two additional genome projects of A. 

clavatus strain NRRL 1 and A. fischeri strain NRRL 181 have been started [38] with the goals 

of better elucidating the A. fumigatus genome and improving its genome annotations. These 

projects are being sequenced by TIGR with funding provided by the National Institute of 

Allergy and Infectious Diseases (NIAID) [39]. An estimated genome size of A. clavatus is 

27.9 Mb and of A. fischeri is 32.5 Mb. A brief summary of available genomic information for 

the Aspergillus species along with some status of their genomes is presented in Table 3.1. 

Several databases are now available for Aspergillus genomes, which provide access to the 

sequence data and include bioinformatics tools for biological sequence analysis. For 

examples, one is the CADRE (Central Aspergillus Data REpository) which is a major public 

resource for Aspergillus species hosting genome data. In addition, various genome projects of 

Aspergillus can be found in the Fungal Genetic Stock Center (FGSC). Table 3.2 presents 

Aspergillus genome sequence websites that are available for public access.  
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Table 3.1 Summary of information on Aspergillus genomes 

 

Aspergillus species Strain 
Genome 

size (Mb) 
Institution/Company Status 

A. nidulans FGSC-A4 

30.1 Broad Institute Complete (13x)  

30.1 
Cereon Genomics 

Complete (3x) 
(Monsanto) 

A. niger 

CBS 513.88 33.9 Gene Alliance/DSM Complete (7.5x) 

ATCC 9029 32 
Integrated 

Genomics/Genencor 
Complete (4x) 

ATCC 1015 34.9 DOE Joint Genome Institute Complete (8.9x) 

A. fumigatus 

Af293 29.4 Sanger Institute, TIGR Complete (10.5x) 

A1163 29.2 
TIGR, Celera Genomics, 

Merck & Co., USA 
Complete 

A. oryzae RIB 40 37.2 
Japanese National Institute of 

Technology and Evaluation 
Complete (9x) 

A. terreus 
ATCC 20542 N/A

*
 Microbia Incomplete 

NIH 2624 29.3 Broad Institute Complete (11x) 

A. flavus NRRL 3357 36.3 
TIGR, University of 

Oklahoma, USDA/ARS 
Complete (10x) 

A. clavatus NRRL 1 27.9 TIGR Complete (11.4x) 

A. fischeri NRRL 181 32.5 TIGR Complete 

A. parasiticus  N/A
*
 University of Oklahoma Incomplete 

A. aculeatus ATCC 16872 N/A
*
 DOE Joint Genome Institute Incomplete 

A. carbonarius IMI 388653 N/A
*
 DOE Joint Genome Institute Incomplete 

Data in the list was gathered from the reviews [40, 41] and the Broad Institute database at 

(http://www.broad.mit.edu/annotation/genome/ aspergillus_group/MultiHome.html) 
*
Not Available 
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Table 3.2 Public genome websites for different Aspergillus species 

Species Public genome websites 

A. oryzae RIB 40 http://www.aist.go.jp/RIODB/ffdb/welcome.html 

A. nidulans FGSC-A4 http://www.broad.mit.edu/annotation/fungi/aspergillus/ 

A. fumigatus Af293 
http://www.tigr.org/tdb/e2k1/afu1/ 

http://www.sanger.ac.uk/Projects/A_fumigatus/ 

A. niger CBS 513.88 http://www.dsm.com/en_US/html/dfs/genomics_aniger.htm 

A. niger ATCC 1015 http://genome.jgi-psf.org/Aspni1/Aspni1.home.html 

A. clavatus NRRL 1 http://msc.tigr.org/aspergillus/aspergillus_clavatus_nrrl_1/index.shtml 

A. fischeri NRRL 181 http://msc.tigr.org/aspergillus/neosartorya_fischeri_nrrl_181/index.shtml 

A. terreus NIH 2624 http://www.broad.mit.edu/annotation/fungi/aspergillus/ 

A. terreus ATCC 20542 http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=AABT00000000 

A. flavus NRRL 3557 http://www.aspergillusflavus.org/genomics/ 

Other Aspergillus sites 

http://www.aspergillus.man.ac.uk/ 

http://www.fgsc.net/aspergenome.htm 

http://www.aspergillus-genomics.org/ 

http://www.genome.ou.edu/fungal.html 

http://www.cadre.man.ac.uk/Hosts 

http://www.cs.man.ac.uk/~cornell/eFungi/database.html 

 

3.1.2 Transcriptomics 

The study of transcriptomics examines the expression level of mRNA by using high-

throughput techniques based on DNA microarray. Over the last decade, DNA microarray has 

become an increasingly important tool to analyze the expression level at the genome level as 

it allows for identification of which genes are active and to what extent. The principle of DNA 

microarray is based on the hybridization of nucleic acids extracted from samples to high-

density arrays of immobilized nucleotide sequences, each corresponding to a specific gene or 

EST from the organism in question. The biochemical potential of DNA microarray is based 

on the specificity and affinity of complementary base pairing [42]. The precise high-density 

positioning of the probes allows them to act as molecular detectors [43]. In applications, the 

transcriptional analysis by DNA microarray is often used to study gene expression on a 

genomic scale, to reveal regulatory patterns and systematic features [42] or to explore the 

function of genes by determining their patterns of expression [44]. An advantage of the DNA 

microarray technology is that it allows parallel and automated expression monitoring, and it is 

therefore suitable for functional genomics [45]. By comparing DNA microarray to more 

traditional methods such as Northern Blotting, a larger number of mRNA can be measured 

under different conditions in a quantitative way, while using very small amounts of biological 

sample [46]. The array technology is flexible, quite cheap and fast [42].  

 

DNA microarray was introduced several years ago, and the first fungal microarray studies 

was reported in S. cerevisiae [47, 48]. Afterward DNA microarray has been widely used for 

genome-wide transcription for different microorganisms, including Aspergillus species. At 

present DNA microarray studies have been used for global gene expression in six different 

Aspergillus species encompassing a broad variety of research areas such as metabolism, 

pathogenesis, and industrial applications [49]. A list of some updated DNA microarray studies 

in different array format is listed in Table 3.3. Nowadays, the field of transcriptomics for 
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aspergilli is being progressed in many research areas. Comparing expression profiles of 

different species of Aspergillus may provide insight into how this diverse group of fungi has 

evolved. With the possibility for comparative transcriptomics between Aspergillus species, it 

might dramatically increase the potential for global gene expression studies in aspergilli. 

Furthermore, it can raise the number of studies available for comparative functional genomics 

in filamentous fungi.  

 

Table 3.3 List of some DNA microarray studies in aspergilli 

 

Aspergillus 

spp. DNA microarray studies Array format 

A. oryzae
*
 

Expression analysis of energy catabolism and hydrolytic 

enzymes  cDNA 

A. nidulans
*
 Identification of biosynthetic terrequinone A gene cluster Nimblegen 

A. nidulans
* 

 

Expression analysis of previously characterized metabolic 

genes cDNA 

A. nidulans
*
 Identification of aflatoxin biosynthesis genes cDNA 

A. nidulans
*
 Identification of unfolded protein response genes cDNA 

A. parasiticus
*
 Identification of aflatoxin biosynthesis genes cDNA 

A. flavus
*
 Identification of aflatoxin biosynthesis genes cDNA 

A. fumigatus
*
  Identification of voriconazole adaptation genes  cDNA 

A. fumigatus
*
 Identification of temperature-regulated genes cDNA 

A. niger
*
 UPR-independent dithiothreitol stress-induced genes Affymetrix 

A. nidulans  
Identification of regulatory genes in different carbon 

sources 
Nimblegen 

   

*
Data were referred to the review [49]  

3.1.3 Proteomics 

Proteomics aims at identifying and quantifying every protein at the same time in the cell.  

Proteome analysis is important for increasing our biological understanding of aspergilli and 

identifying enzyme with biotechnological potential as well as for new antifungal drug target 

identification [50]. The aim of proteomics is to obtain quantitative data of differential protein 

expression in response to environmental alteration. Several researches have shown that 

mRNA levels do not correlate well with protein expression levels, and the study of the whole 

dynamic proteome has therefore gained more significance [51, 52]. To date, the proteomics 

studies have developed a large diversity in terms of methods used, such as Two-Dimensional 

PolyAcrylamide Gel Electrophoresis combined with mass spectrometry [53], protein arrays 

[54], Isotope-Coded Affinity Tagging [55] and techniques for investigation of protein 

interactions such as a yeast two-hybrid system [56]. The availability of genome sequences 

together with proteomics technologies are beginning to reveal the complex and dynamic 

nature of Aspergillus species. 

 

3.1.4 Metabolomics 
 

Metabolomics is the study of all, or a large group of, intracellular metabolites in a biological 

organism with a single method and metabolite profiling gives a snapshot of the physiology of 

the cell. Nowadays, many high-throughput methods for quantitative metabolome analysis are 
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used such as Nuclear Magnetic Resonance, Gas Chromatography Mass Spectrometry, Gas 

Chromatography Time-Off Flight, and Liquid Chromatography-Mass Spectrometry [57].  

However, only a few publications about aspergilli have appeared.  

 

3.2 Bioinformatics 
 

The term “bioinformatics” was introduced only a few years ago, and it represents a growing 

area of science that uses computational approaches together with modern molecular biology 

techniques to answer biological questions [58]. In answering these queries, bioinformatics 

tools are utilized to analyze biological data sets in a rigorous fashion. Basically, the meaning 

of bioinformatics encompasses the generation, collection, storage in digital form, and efficient 

exploitation of data and information from high-throughput technologies such as genomics, 

transcriptomics, proteomics, metabolomics, statistical data from various experimental trials, 

and also scientific literature. At present the major uses of bioinformatics are in the area of 

completed genome analysis, genome annotation and comparative genomics [58]. With the 

availability of complete genome sequences of different Aspergillus species, the use of 

sequence information to annotate genes and to identify gene products has been extensively 

studied. In principle, the goal of annotation is to deduce from the genome sequence to its 

corresponding biological features, exploring and describing all intermediate levels such as 

molecular and cellular processes. Annotation is thus a complex process that requires, besides 

of analysis of the raw sequencing data, the integration of much additional information [22]. 

For examples, information is gathered from using different bioinformatics tools, extracting 

data from generic or specific databases, collecting biological knowledge accumulated in the 

literature over the years and obtaining data from genome-wide experiments. Thus, several 

different types of information needs to be integrated and it is therefore important in the 

annotation processes to use suitable bioinformatics tools [22]. Because of the complexity of 

the genome structure of different aspergilli, a multilayer annotation analysis pipeline as 

illustrated in Figure 3.2 is often used. This shows the individual step and workflow of 

individual module involved in the annotation of an Aspergillus genome. The major players in 

this workflow are bioinformatics algorithms (i.e. nucleotide level, protein level and 

bioprocess level annotation) and integration of ome-data.  Several gene finding programs and 

functional assignment programs have been developed for use in Aspergillus. They differ in 

the underlying parameters used for gene and function detection. Combinatorial approaches are 

often used for performance accuracy of gene finding and function prediction. In Figure 3.2, an 

overall annotation process is applied to predict the genes and to assign protein functions. For 

each species, the annotation algorithm depends on which method is used for gene prediction 

(e.g. using Expressed Sequence Tag (EST) library or comparative genomics) and functional 

assignment (e.g. homology detection, domain detection, or etc). Also, which software or 

database is selected for suitable species.  
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Figure 3.2 Schematic analysis of the pipeline for gene prediction and annotation in aspergilli. 

 

3.3 Systems biology 
 

There are many definitions of systems biology, but most of these contain elements such as 

mathematical modeling, global analysis (or ome analysis), mapping of interactions between 

cellular components, and quantification of dynamic responses in living cells. In most cases the 

objective of systems biology is to obtain a quantitative description of the biological system 

under study, and this quantitative description may be in the form of a mathematical model. In 

some cases, the model may be the final result of the study, i.e. the model captures key features 

of the biological system and can hence be used to predict the behaviour of the system at 

conditions different from those used to derive the model. In other cases, mathematical 

modeling rather serves as a tool to extract information of the biological system, i.e. to enrich 

the information content in the data. There is not necessarily a conflict between the two, and 

generally, mathematical modeling goes hand in hand with experimental work [59]. Systems 

biology do not necessarily involve the use of omics data, but still the use of global studies are 

often particularly rewarding for biological systems where there are many unknown factors 

and components, as is the case for aspergilli. However, the use of omics studies without 

thorough analysis, where the data are put into the context of the whole system, is often not 

providing much information about how the system operates. Here genome-scale metabolic 

models offer an attractive scaffold for analysis of omics data, as well as discussed here they 

offer good opportunities for simulation of cellular behaviour. In the following, we describe 

introduction of genome-scale metabolic models. 

 



SYSBIOMICS of Aspergilli 2009 

 

17 

 

Genome-scale metabolic models 

Briefly, there are several steps for building a genome-scale metabolic model. Normally, the 

modeling process starts with reconstruction of the metabolic network from the collected 

information, such as annotated genomic data, biochemistry textbooks, literature and 

bioinformatics databases. Thereafter follows the development of a stoichiometric metabolic 

model, where the stoichiometry of the individual reactions is checked and the reactions are 

connected to form a metabolic model. This metabolic model can then be used for simulations 

using Flux Balance Analysis, and hereby it is possible to gain quantitative data for cellular 

phenotypic behavior and these can be compared with experimental data. In this process, the 

model may have to be refined such that its predictions are in closer agreement with 

experimental observations. Furthermore, data from different levels of cellular processes may 

be incorporated into the genome-scale metabolic model for improvement of the predictions 

[60].  

 

To date, genome-scale metabolic models have been developed for several microorganisms 

and used for many different applications. The first fungal metabolic model, namely for the 

yeast S. cerevisiae, was reconstructed by Forster et al. [61] and in 2008 this model was 

updated with additions of many new reactions, in particular reactions involved in lipid 

metabolism [62]. In these models, the metabolic reactions were compartmentalized between 

the cytosol and the mitochondria, and transport steps between the compartments and the 

environment were included. The Forster et al. model was the first comprehensive 

reconstructed metabolic network for an eukaryotic organism, and it has been used as the basis 

for in silico analysis of phenotypic functions. In recent years, comprehensive knowledge 

regarding S. cerevisiae based modeling has accumulated, and today this yeast model has been 

used for metabolic engineering for biotechnological application [63]. In addition to yeast, 

metabolic models for Aspergillus have been developed. For instance, a metabolic model of the 

central carbon metabolism of A. niger was reconstructed [64, 65]. Additionally, recently 

several genome-scale models for whole metabolism of Aspergillus species have been 

reconstructed: one for A. nidulans [66] and one for A. niger [67]. There are several 

applications of these metabolic models, e.g. the A. niger model [64] was applied to search for 

strategies to improve succinic acid production. Another example is the application of a 

developed genome-scale model of A. niger for simulating the operation of the oxidative 

pathways during production of citrate at high yields [67].  The A. nidulans model [66] was 

used to integrate information on transcriptome data in order to identify subnetworks structure, 

and this showed that subnetworks structure can point to coordinate regulation of genes that 

are involved in many different parts of the metabolism [68].  
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Chapter 4 

4. Improved annotation through genome-scale metabolic model of A. oryzae 

This chapter describes the first case study that shows how SYSBIOMICS approach can be 

used to to link genome sequence information to a functional metabolic model, and how it is 

possible to improve genome annotation through development of a genome-scale metabolic 

model for A. oryzae. Furthermore, we discuss the results of simulation and validation of the A. 

oryzae metabolic model at various growth conditions (see full details in Paper 1). 

 

4.1 SYSBIOMICS-based improved genome annotation and metabolic 

model reconstruction 
To improve the annotation through reconstructing a metabolic model of A. oryzae, we 

followed four main steps as illustrated in Figure 4.1, i.e. the SYSBIOMICS paradigm was 

used to link from genome sequence (genotypic level), to gene, to protein function, to 

metabolic reaction, and further to metabolic model (phenotypic level).  
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Figure 4.1 Genotype-Phenotype relationship based SYSBIOMICS paradigm. 
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4.1.1 Gene finding 
 

First improved gene finding was carried out based on our assembled library of 9,038 EST 

sequences of A. oryzae (GenBank accession number: "EY424375–EY433412") together with 

public EST data from A. flavus [69]. A. oryzae’s EST data and A. flavus’s EST data were 

compared to the genes previously identified [33] in the genome of A. oryzae strain RIB 40 by 

BLASTN [70]. The purpose of this comparison was to validate genes that were already 

annotated and to discover new genes that had not been annotated from previous work 

presented by Machida et al. [33].  

 

According to our strategy implemented for gene finding, the 9,038 EST sequences were 

searched against the 12,074 previously identified genes obtained from Machida et al. [33] in 

the sequenced genome using various search parameters to create lists of predicted genes with 

different match stringencies. Using the criteria, many dissimilar sequences between the EST 

sequences and previously identified gene sequences of A. oryzae [33] were found. This 

suggests the presence of many newly predicted genes. Interestingly, approximately 12% 

(1,046 out of the 9,038 EST sequences) were categorized as newly predicted genes in the 

genome. Many homolog sequences were also found strongly validating previously identified 

genes [33], with approximately 75% of the total EST sequences (6,773 out of the 9,038 EST 

sequences) matching earlier identified genes. To confirm that all the EST sequences do 

existed in the A. oryzae genome, the 9,038 EST sequences were searched against the complete 

genome, and the results showed that only 20 EST sequences could not be found to be present 

in the genome. Therefore, this suggests that the assembled EST data of A. oryzae had very 

high quality and showed an excellent success rate for gene discovery and validation, even 

though approximately 13% (1,219 out of the 9,038 EST sequences) could not be used to 

predict genes, because 6% (582 out of the 9,038 EST sequences) were too short and about 7% 

(637 out of the 9,038 EST sequences) were too weakly validated in the original gene list using 

a conservative cut-off. In another attempt to predict new genes in A. oryzae genome, A. flavus 

EST data stored in the TIGR public database [69] were also used because A. flavus and A. 

oryzae are very closely related. However, using these A. flavus EST sequences to search 

against the genes in our new gene list for the A. oryzae genome, no new genes were predicted. 

Based on all the results of the gene finding a total of 13,120 protein-encoding genes were 

identified in the A. oryzae genome. This total number of genes deviates from the 12,074 

previously annotated genes by Machida et al. and 1,046 newly predicted genes were identified 

from our assembled EST library. 

 

4.1.2 Function assignment 

 
In order to assign protein functions to the 13,120 predicted genes, sequence alignment 

analysis based homology searching was performed. The alignment was done through pairwise 

comparison of protein sequences by BLASTP [70] between A. oryzae RIB40 (version 1) [71] 

and other related fungi (i.e. A. nidulans FGSC-A4 (version 3) [72], A. fumigatus Af293 

(version 1) [73], S. cerevisiae S288C [74, 75]. For newly predicted genes,  sequence 

alignment was done to assign putative function by BLASTX [70] against the non-reduntdant 

protein database [76] and protall_e database (Novozymes’s database). The annotation process 

used here (see Methods in Paper 1) resulted in the improved annotated data shown in Table 

4.1 where the data are compared with values in the A. oryzae genome database by Machida et 

al. [33]. The results show that the number of improved annotated genes is 13,120 which are 

higher than the number of genes in the database [33]. In total, the annotated genome of A. 

oryzae contains 7,258 putative protein functions of which 3,894 proteins have metabolic 
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functions. Even though the genome still contains 5,862 hypothetical proteins this is less than 

the 6,683 hypothetical proteins currently reported in the database [33], and the work therefore 

resulted in a substantial improvement of the genome annotation. The enhanced annotated data 

were mapped on the A. oryzae genome by using the Perl Scalable Vector Graphics (SVG) 

Module V2.33. Figure 4.2 shows an example of gene and EST mapping on the contig of 

AP007151 which is a part of chromosome 1 of the A. oryzae genome.  

Table 4.1 Statistical values of our improved genome annotation compared with previous 

publication
*
  

Characteristics of annotation                                         This study Machida et al.
*
 

Protein-encoding genes 13,120 12,074 

Putative protein functions 7,258 5,391 

- Metabolic genes 3,894 3,178 

- Other functional groups of 

protein-encoding genes 
3,364 2,213 

Hypothetical protein encoding 

genes 
5,862 6,683 

*
Machida et al. [33] 

 

 

Figure 4.2 Example of gene and EST mapping on the A. oryzae genome (In contig of 

AP007151).  
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4.1.3 Metabolic network reconstruction and gap filling 

After finishing the improved annotation process, a metabolic network for A. oryzae was 

reconstructed. The metabolic network reconstruction aimed at representing the whole 

metabolism of A. oryzae, which consists of primary metabolism of carbohydrates, amino 

acids, nucleotides, lipids, cofactors and energy, as well as of secondary metabolism. 

Combination of different types of information was essential to carry out a solid 

reconstruction. Information was collected from the improved annotated data of A. oryzae, an 

initial metabolic reaction list from other available metabolic models (e.g. S. cerevisiae [61], A. 

nidulans [68], and A. niger [64, 67]), biochemical pathways (e.g. KEGG database [77] and 

BioCyc database [78]), publications on specific enzymes, online protein databases (e.g. 

Swiss-Prot database [79]) and also literature. In addition, physiological evidence for the 

presence of a reaction or a pathway in A. oryzae was used to add reactions, e.g. when there 

was information of presence of a specific enzyme activity or presence of a pathway involved 

in consumption of a given substrate or formation of a given metabolic product, then the 

underlying reaction was added to the model, even if there was no annotated gene supporting 

the presence of the reaction. In the processes of stoichiometry for cofactors as well as the 

information on reversibility or irreversibility for each reaction, these were considered and 

added as information into the reconstructed network. Different cellular compartments were 

considered and consequently biochemical reactions were distributed into four different 

compartments: the extracellular space, the cytosol, the mitochondria, and the peroxisome. The 

localization of each biochemical reaction was analyzed according to enzyme localization, 

which was performed by applying protein localization predictors. Herein, pTARGET [80] and 

CELLO [81] were selected to predict sub-cellular protein localization because they contain 

databases of known eukaryotic protein localizations. If there no information on localization of 

a biochemical reaction or its corresponding enzyme could not be found, then by default this 

reaction was considered to occur in the cytosol. In addition, the reconstructed metabolic 

network included transport steps between the different intracellular compartments and 

between the cell and the environment. 

 

The reconstructed metabolic network contained many gaps. In order to identify genes 

encoding enzymes with specific functions and hereby reduce the number of gaps in the 

metabolic network, an integrated bioinformatics tool was developed and it was used to 

identify these missing enzymes. This tool called "Gap Filler for Aspergillus oryzae Pathway 

(GFAOP)" was developed in- house by combining different bioinformatics tools (i.e. BLAST 

[70], HMMER [82], and PSI-BLAST [83]) and databases (i.e. A. oryzae genome [33], Pfam 

[84], COG [85], and NR [76]). An overview of GFAOP is shown in Figure 4.3 with an 

example and the implementation is illustrated in Paper 1. As a result of using GFAOP, the 

missing enzyme of D-xylose reductase (Figure 4.3) was entered into the pathway. Our method 

resulted in an improved annotation of the genome using the context of the metabolic network. 

An iterative process was done for filling all the gaps in the whole metabolic network and 

ultimately, 210 gaps in the metabolic network were closed using GFAOP.  
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Is there a gene-encoding D-xylose reductase in the A. oryzae genome

NR

COG

Gap Filler for Aspergillus oryzae Pathway (GFAOP)

A. oryzae genome

Pfam

HMMER

PSI-BLAST

BLAST

D-Xylose Xylitol D-Xylulose D-Xylulose-5-phosphate

Pentose-phosphate pathway

1.1.1.9 2.7.1.171.1.1.21

D-Xylulokinase
Xylitol 

dehydrogenase

D-Xylose 

reductase

Xylose degradation pathway

?

 
Figure 4.3 Filling gap by integrated bioinformatics approach 

The improved annotation process resulted in a final reconstructed metabolic network that 

contains 1,314 genes, 729 enzymes, 1,846 (1,053 unique) biochemical reactions and 1,073 

metabolites. The large number of isoenzymes (indicated by the difference between the total 

number of biochemical reactions and unique biochemical reactions) points to a very high 

degree of flexibility in the metabolic network of A. oryzae. The 1,053 unique biochemical 

reactions are distributed into 832 cytosolic, 172 mitochondrial, 19 peroxisomal, and 30 

extracellular reactions. There are 281 (161 unique) reactions that function as transport 

processes, and of these 173 (53 unique) are included on the basis of gene assignments 

whereas there are no annotated genes for 108 of the transport reactions. All the genes and 

functions involved in metabolism were inspected manually.  

 

4.1.4 In silico modeling and validation 

After the metabolic network was reconstructed, the network was transformed into a 

mathematical framework to allow for Flux Balance Analysis (FBA). This approach is based 

on conservation of mass at steady-state conditions. This transformation requires information 

about the stoichiometry of the metabolic reactions, metabolic demands and a few specific 

parameters. Using the FBA model growth can be simulated using linear programming by 

introducing an appropriate objective function, e.g. one reaction is selected as an objective 

function that is to be maximized or minimized. For physiologically meaningful results, the 

objective functions must be defined as the ability to produce the required components of 

cellular biomass for a specified uptake rate of a selected carbon source. By maximizing the 

flux towards biomass formation, a flux is obtained for each reaction in the metabolic network. 

In this process it is important to validate the model. In this study, the model was validated by 

our experimental data simulating the rate of biomass formation on different carbon sources in 

batch experiments and also it was validated by literature data [86, 87] simulating biomass 

yield in chemostat experiments. Here the uptake rate of the carbon source was given as input 

to the simulations. Different carbon sources namely glucose (C6), maltose (C12), glycerol (C3) 

and xylose (C5), were selected as they result in widely different physiological responses. The 

strain used for generating these data was A. oryzae wild type strain A1560, which was 
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obtained from Novozymes A/S, Denmark. The validation results (see Paper 1) indicate that 

the model can accurately predict the maximum specific growth rate (h
-1

) during batch 

cultivations and the biomass yield (gDW/mmol substrate) during chemostat cultivations on 

different carbon sources. In this case study, we conclude that the model serves as an important 

resource for gaining further insight into our understanding of A. oryzae physiology. 

 

4.2 Comparison of Aspergillus metabolic models 

The key statistics of the A. oryzae metabolic model were compared to that of other available 

Aspergillus genome-scale metabolic models. In order to evaluate the models in a systematic 

way and to allow for comparison across the three models, we have updated all metabolite 

names across three Aspergillus metabolic models using the ChEBI ontology database, the 

KEGG database and manual curation at the end [88]. Due to this update the number of 

metabolites of the three models is slightly changed when compared to the original references 

and these changes led to slightly difference in the unique reactions. Number of genes, 

metabolites and reactions have been updated as shown in Table 4.2 and the three models of 

aspergilli have been converted to use the Systems Biology Markup Language (SBML) and are 

available at www.sysbio.se [88].   

 

To evaluate the overlap of the metabolic models of the three aspergilli, the reactions in A. 

oryzae iWV 1314 were compared to the genome-scale metabolic models of A. niger iMA871 

and A. nidulans iHD666. The results are shown in Figure 4.4. We found 426 reactions are 

overlapped for the three models. In A. oryzae iWV1314 there are 536 unique reactions that are 

not present in the other models, and besides this the main difference is due to divergences in 

compartmentalization used. Additionally, a number of pathways are found in A. oryzae, but 

not in A. niger and A. nidulans (e.g. aminoacyl-tRNA biosynthesis, metabolism of other 

amino acids, cofactors and vitamins metabolism). A. niger iMA871 contains 600 unique 

reactions in the network. These are large extent reactions relating to lipid biosynthesis and 

xenobiotic catabolism. The A. nidulans iHD666 model contains 156 unique reactions, which 

is a lower number than for the A. oryzae and A. niger models because the A. nidulans model is 

less complex and in this model many reactions are lumped, especially in lipid metabolism.  

 

Table 4.2 Comparison of metabolic models for three Aspergillus species 

Organism  Model name  
Metabolic  

genes  
Metabolites

a
  

Unique metabolic 

reactions
b
  

References  

A. nidulans  iHD666  666 543 (740) 789 [68] 

A. niger  iMA871  871 782 (1047) 1194 [67]  

A. oryzae  iWV1314  1314 808 (1102) 1243 This study  
a
Number of chemically distinct metabolites, not counting presence in multiple compartments.

 

Metabolite number in parenthesis counting presence in multiple compartments 
b
Unique reactions are defined as reactions being biochemically unique in their own 

compartment or transport reactions. Isoenzymes are thus not included in this number. 

Directionality is not taken into account.  
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Figure 4.4 Venn diagram of reaction statistics for three genome-scale models of Aspergillus. 

The diagram shows the number of unique reactions shared and reactions that are specific for 

the three models. 

 

4.3 Graphical representation of A. oryzae metabolic network 
To illustrate the whole metabolic network, an overall metabolic map of A. oryzae was drawn. 

This map allows for graphical presentation of modeling results and of omics data. Figure 4.5 

presents this network that link genes, enzymes, metabolic reactions and metabolites. This map 

was further used as graphical representation of genome-scale data in chapter 5 and 6 to map 

gene expression data or flux data.  

 

 

Figure 4.5 Overall metabolic map of A. oryzae. 
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Chapter 5 

 
5. Different carbon sources on metabolism and transcriptional regulation 

across three Aspergillus species 
 

Carbon metabolism and regulation in Aspergillus species is intensively studied. In many 

cases, the carbon source effects transcription of genes and the effect can sometimes be 

foreseen from the functions of their gene products. To further investigate this principle, this 

chapter represents the second case study that describes the obtained results from applying the 

SYSBIOMICS approach. The chapter is divided into three main parts. Firstly, we summarize 

the results and discussion of a study on the growth physiology on four different carbon 

sources. The different carbon sources discussed are glucose (see full details in Paper 2, 3 and 

4), xylose (see full details in Paper 2), maltose (see full details in Paper 3) and glycerol (see 

full details in Paper 4). In the second part, we present the results and discuss transcriptome 

studies on these four carbon sources as well as present results of comparative analysis of three 

aspergilli. In the last part, we present analysis of genome-wide co-expression and co-

evolution of aspergilli (see full details in Paper 5).  

 

5.1 Growth physiology 
In order to study carbon metabolism and transcriptional regulation in aspergilli, batch 

cultivations on four different carbon sources (i.e. glucose, maltose, xylose or glycerol) were 

performed and further comparative transcriptome analysis was done for A. oryzae, A. niger 

and A. nidulans. Table 5.1 gives an overview of all these investigations. 

 

Table 5.1 List of different carbon sources for study of growth physiology and transcriptome 

profiling in three aspergilli 

 Different carbon sources 

Aspergillus species Glucose Maltose Xylose Glycerol 

A. oryzae A1560 (Wild type) + + + + 

A. niger BO1 (Wild type) + + + + 

A. nidulans FGSC-A4 (Wild type) +  + + 

+  indicates that the carbon source was used to study growth physiology and transcriptome 

profiles in the Aspergillus species 
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Figure 5.1 Summary of fermentation profiles of batch cultivations on four carbon sources 

carried out with A. oryzae A1560, A. niger BO1 and A. nidulans FGSC-A4 

 

The cultures of these three Aspergillus species were all carried out in well-controlled 

bioreactors. All cultivations were batch cultures grown on defined salt medium with glucose, 

xylose, maltose or glycerol as the carbon source. For each of the three species, three 

biological replicates cultivations were performed on each carbon source. Figure 5.1 presents 

fermentation profiles of the four different carbon sources and Table 5.2 summarizes the 

physiological characterization data. For A. oryzae, glucose was exhausted in 10 h, maltose in 

12 h, glycerol in 14 h and xylose in 15 h. The maximum specific growth rate of A. oryzae on 

glucose was 0.38±0.004 h
-1

, which is due to the high efficiency in the uptake and metabolism 

of this sugar. Slower growth was achieved on maltose, where the maximum specific growth 

rate was 0.32±0.160 h
-1

. For glycerol as carbon source, the maximum specific growth rate on 

of A. oryzae was 0.30±0.004 h
-1

. Xylose is a less favorable carbon source for A. oryzae, but it 

could still be efficiently metabolized allowing for growth at a maximum specific growth rate 

of 0.27±0.010 h
-1

. For A. niger, glucose was exhausted in 32 h, whereas maltose, xylose and 

glycerol were consumed after 19 h, 45 h and 86 h, respectively. A. niger growth on maltose 

was the fastest. Slower growth was achieved on glucose, with a maximum specific growth 

rate of 0.22±0.015 h
-1

. In the case of maltose consumption, there was an accumulation of 

glucose due to a very high extracellular glucosidase activity expressed by A. niger, which 

allowed the fungus to grow very fast on this carbon source at a maximum specific growth rate 

of 0.31±0.020 h
-1

. Xylose was a less favorable carbon source for A. niger, but still A. niger is 

able to efficiently metabolize it and grow at a maximum specific growth rate of 0.19±0.030 h
-
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1
. For glycerol, the growth of A. niger was 4 times slower when compared to glucose. In the 

case of A. nidulans, the maximum specific growth rate on glucose (0.23±0.020 h
-1

) was faster 

than on xylose (0.16±0.010 h
-1

) and the growth rate was double than that on glycerol 

(0.11±0.010 h
-1

). Besides of growth rates for the three aspergilli, transcriptional analysis (TA) 

sampling times and biomass concentrations at the specific TA sampling time, and biomass 

yields were recorded for the three species on the four different carbon sources (see Table 5.2). 

 

Table 5.2 Data for batch cultivations of A. nidulans FGSC-A4, A. oryzae A1560 and A. niger 

BO1. Fermentations were performed in three biological replicates. Values are shown as 

average ± standard deviations 

Aspergillus 

Strains  

Carbon 

source  

µmax
1
 Ysx  

Time of 

sampling
2 
 

Biomass 

concentration
3 

 

(h
-1

) 
(g DW/g  

substrate)  
(h)  (g DW/L)  

 Glucose  0.38±0.004  0.54±0.013  ~6  2.50±0.09  

A. oryzae Xylose 0.27±0.010 0.53±0.130 ~10 2.80±0.11 

 Maltose 0.32±0.160 0.49±0.150
*
 ~7 2.27±0.09 

 Glycerol  0.30±0.004  0.52±0.008  ~8  2.44±0.05  

 Glucose  0.22±0.015  0.57±0.053  ~23  4.37±0.42 

A. niger Xylose 0.19±0.030 0.45±0.010 ~31 3.73±0.55 

 Maltose 0.31±0.020 0.62±0.020
*
 ~24 3.55±0.51 

 Glycerol  0.05±0.007  0.40±0.022  ~36  0.88±0.29  

A. nidulans 

Glucose  0.23±0.020  0.47±nd  ~22  6.33±0.40  

Xylose 0.16±0.010 0.45±nd ~33 6.43±0.23 

Glycerol  0.11±0.010  0.42±nd  nd  6.50±0.50  
1
µmax: maximum specific growth rate.  

2
Time of sampling: average time of sampling for transcriptome analysis.  

3
Biomass concentration: biomass concentration at the sampling time 

*
Biomass yield was calculated based on glucose (g DW/g glucose)   

nd: not detectable  

 

5.2 Transcriptome analysis 
 

To perform initial analysis of microarray data, we designed an Aspergillus Affymetrix 

GeneChip (see details in Paper 2) that consists of probes for the genes from the genomes of A. 

oryzae, A. niger and A. nidulans. Then we applied our own deigned chip to detect the effect of 

different carbon sources on genome-wide expression data and performed comparative 

analysis of the three species. The results and discussion are described as follows.  

 

5.2.1 Xylose metabolism and regulation 
 

For all three sample sets from glucose or xylose fermentations, transcriptome data analysis 

was performed for all three aspergilli (see Paper 2 for details). In summary, in order to study 

xylose metabolism and regulation in aspergilli, we analyzed gene expression that was 

conserved across three species A. oryzae, A. niger and A. nidulans. First homologues genes 

for the three species were identified by using pairwise BLASTP comparisons [70]. Using this 

approach, based on bi-directional best hits with an E-value cut-off of 1E-30, 5,561 predicted 
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genes were found to be conserved in all three species (1:1:1 orthologues). The three sets of 

5,561 conserved genes were initially used for further analysis. 

 

Pairwise xylose versus glucose comparisons 
 

From statistical analysis of gene expression data, the significantly regulated genes in all three 

species were compared to the list of the 5,561 conserved genes as well as with each other. 

This resulted in the identification of 23 conserved genes (Figure 5.2 and Table 5.3) that are 

differentially regulated in all three species as well as 365 genes that are differentially 

expressed in only two of the aspergilli. The 23 genes that are significant in all three species 

can be seen as a conserved response across the Aspergillus genus. A further inspection of the 

expression values of the 23 common genes revealed that the homologues are regulated in the 

same direction, with 22 of the genes being up-regulated on the xylose medium and only one 

gene being down-regulated. With the annotation of 23 conserved genes, the protein-encoding 

genes are enzymes and sugar transporters. As mentioned, most of the genes were induced in 

all three species and they were involved in D-xylose degradation pathway. Interestingly, the 

xylanolytic transcriptional activator XlnR was also identified as having a conserved 

transcriptional response. However, we found one down-regulated gene, which encodes a 

monosugar transporter (mstC), and this gene may encode a conserved transporter that has a 

higher affinity for glucose.  

 

Figure 5.2 Venn diagram of significantly differentially expressed genes from t-test pairwise 

comparisons in the three aspergilli. The colored circles contain the genes that are significantly 

differentially expressed and conserved in the three Aspergillus species. The numbers on a 

white background are not conserved in all three species, but differentially expressed in each 

species. 
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Table 5.3 The 23 genes with conserved transcriptional responses in all three Aspergillus 

species 

A. nidulans  A. oryzae A. niger A. niger annotation 

AN0250 AO090001000069 55668 Sugar transporter 

AN0280 AO090005000767 55419 Glucosyl hydrolase 

AN0423 AO090003000859 51997 D-xylose reductase (xyrA) 

AN0942 AO090005001078 46405 L-arabitol dehydrogenase 

AN10124 AO090003000497 213437 β-glycosidase 

AN10169 AO090038000426 177736 Short-chain dehydrogenase 

AN1677 AO090023000688 54541 Short-chain dehydrogenase 

AN2359 AO090005000986 205670 β-xylosidase (xlnD/xylA) 

AN3184 AO090012000809 55604 Aldose 1-epimerase 

AN3368 AO090010000208 212893 Glycoside hydrolase 

AN3432 AO090020000042 56084 Aldose 1-epimerase 

AN4148 AO090009000275 205766 Sugar transporter 

AN4590 AO090011000483 180923 Sugar transporter 

AN5860 AO090026000494 197162 Monosugar-transporter (mstC) 

AN7193 AO090023000264 55928 Aldo/keto reductase 

AN7610 AO090012000267 48811 XlnR transcriptional activator 

AN8138 AO090010000684 212736 α-galactosidase 

AN8400 AO090020000324 199510 Sugar transporter 

AN8790 AO090020000603 209771 D-xylulokinase (xkiA) 

AN9064 AO090038000631 203198 Xylitol dehydrogenase (xdhA) 

AN9173 AO090010000063 194438 Sugar transporter 

AN9286 AO090026000127 56619 α-glucuronidase (aguA) 

AN9287 AO090701000345 54859 Lipolytic enzyme 

 

Identification of conserved motif for XlnR regulator 

Realizing that one or more conserved transcriptional regulators might be active in all three 

species and be responsible for the conserved response of the 23 genes, statistical promoter 

analysis was performed for all three species sets of 22 genes up-regulated on xylose (see 

Methods for detection of conserved motifs in Paper 2). A motif of “GGNTAAA” was found 

to be significant in the promoter sequences of 46 of the 3*22 genes. Based on this analysis, 

we propose that the “GGNTAAA” motif is indeed the XlnR motif that is conserved in A. 

nidulans, A. niger, and A. oryzae.  

 

5.2.2 Maltose utilization and regulation 
 

For all three sample sets from glucose and maltose fermentations, transcriptome data analysis 

was performed in two different Aspergillus species, namely A. oryzae and A. niger (see Paper 

3 for details). In brief, in order to study maltose utilization and regulation in aspergilli, yeast 

S. cerevisiae was used as model organism since regulation of maltose transport and 

metabolism is well studied in this organism [89, 90]. The presence of maltose in the 

environment is necessary for induction of synthesis of the maltase and the maltose transporter. 

The metabolism and regulation of maltose requires the presence of a MAL loci, of which there 

are several identified in different strains of S. cerevisiae, but the MAL6 locus is the most well 
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studied [89]. The MAL6 locus is composed of a cluster of three genes: MAL61 (MALT) 

encoding maltose permease, MAL62 (MALS) encoding maltase and MAL63 (MALR), 

encoding transcriptional activator specifically activating expression of the MALT and the 

MALS genes [91]. The aim of this study was to identify the MAL gene cluster in different 

sequenced Aspergillus genomes using the gene cluster of the MAL6 locus of S. cerevisiae as a 

model. We further validated  the presence or absence of the MAL gene cluster in A. oryzae 

and A. niger by using our custom designed Affymetrix GeneChip for transcriptome analysis 

(Paper 2) [92]. 

 

Comparative analysis of MAL gene clusters in S. cerevisiae and Aspergillus species 

 

First we searched for the presence of the MAL gene cluster in 10 different sequenced 

Aspergillus genomes. For this purpose, the gene cluster of the MAL6 locus of S. cerevisiae 

was used as a model and BLASTP was applied (see Methods in Paper 3). The results showed 

that six different Aspergillus strains (i.e. A. oryzae, two strains of A. fumigatus, A. flavus, A. 

clavatus, and A. fischeri) contain at least one MAL gene cluster as illustrated in Figure 5.3. In 

contrast, we could not find any MAL cluster in A. nidulans, A. terreus and two strains of A. 

niger with the statistical constraints imposed. These results could suggest that these four 

Aspergillus strains most likely do not have the MAL regulon for maltose utilization. Notably, 

in all the sequenced Aspergillus genomes, we could identify multiple orthologue genes 

encoding maltase enzymes and maltose transporters as shown in Figure 5.3. To prove the 

presence or absence of the MAL regulon at the transcriptional level, we further evaluated our 

results obtained from comparative genomics through transcriptomics analysis. In the 

following, we show an example of using our previously designed Aspergillus GeneChip 

(Paper 2) [92] to validate the presence of the MAL regulon in the A. oryzae genome and the 

absence of the MAL regulon in the A. niger genome. 

 

MAL gene cluster Orthologs

Aspergillus

species Cluster 1 Cluster 2 Cluster 3 No cluster

A. oryzae

RIB40

A. niger

CBS 513.88

A. niger

ATCC 1015

A. nidulans

FGSC A4

A. fumigatus

Af293

A. fumigatus
A1163

A. flavus

NRRL 3357

A. terreus

NIH2624

A. clavatus

NRRL 1

A. fischeri

NRRL 181

MalR MalS MalT

 

Figure 5.3 Diagram shows comparative sequence analysis of MAL gene cluster between S. 

cerevisiae and 10 different Aspergillus species. Values in each rectangle represent the ORF 

name. 
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Pairwise maltose versus glucose comparisons 
 

To further test our assumption obtained from comparative genomics for MAL regulon 

presence in A. oryzae or not present in A. niger, the genome-wide gene expression data 

obtained from glucose or maltose cultivations were pairwise compared for each species. To 

detect transcriptional changes in response to a change in the carbon source, Student’s t-test 

statistics were used to identify significantly different gene expression levels with p-value cut-

off of 0.05. List of genes (see results in Paper 3) were significantly differentially expressed in 

A. oryzae between glucose and maltose (16 gene expression changes). In contrast, for A. 

niger, no genes were statistically differentially expressed. 

 

As presented in Paper 3, 16 genes showed higher expression level on maltose compared to 

glucose in A. oryzae. Interestingly, among the 16 genes with significantly higher expression 

on maltose, we found genes encoding maltase in A. oryzae (AO090103000129 and 

AO090038000234), which correspond to orthologous genes of MALS in S. cerevisiae (see 

Figure 5.3). Moreover, we also found up-regulated genes encoding maltose permease, 

AO090103000130 and AO090038000233, which are the functionally related orthologous 

genes of MALT in S. cerevisiae (see Figure 5.3). The two A. oryzae genes orthologous to the 

S. cerevisiae MALR transcription factor, AO090103000131 and AO090038000235, were also 

up-regulated, but not statistically significant. This suggests that the mechanism behind the 

MALR regulon in A. oryzae is similar to MALR function in S. cerevisiae, where it is activated 

by maltose and repressed by glucose.  

 

According to the results of protein sequence analysis and synteny gene analysis [93] of the 

MAL gene cluster, we could conclude that A. oryzae has two MAL regulons and each regulon 

contains gene that is likely to be MALR transcriptional activator (see Figure 5.3). From this 

significant evidence combined with the physiological response of A. oryzae growth on 

maltose (see Figure 5.1), where A. oryzae continuously consumed maltose having almost no 

accumulated glucose over time, we propose that A. oryzae has global regulation of maltose 

utilization by these two MAL regulons, where the MALR transcription factor induces maltose 

permeases (MALT) to transport extracellular maltose into the cell and MALR also induces 

maltase (MALS) that hydrolyzes intracellular maltose into glucose, which is then channelled 

through glycolysis. In contrast, we could not identify any MAL gene cluster in A. niger that is 

closely homologous to the one existing in S. cerevisiae (see Figure 5.3). Furthermore, 

transcription data analysis of the pairwise comparison between maltose and glucose in A. 

niger, did not show any significant gene expression change that can point out the presence of 

MAL cluster either. We therefore propose that maltose utilization in A. niger most likely do 

not involve a MAL regulon, but occurs through another regulatory system and the recent 

publication of genome-wide expression analysis in A. niger by Yuan and coworkers [94] 

supports these results. Yuan et al. suggested that AmyR is an important transcription factor that 

is found in A. niger and that amyR itself is induced by the presence of maltose. In addition, their 

studies indicated that amyR gene transcription regulation takes place in A. niger and showed that a 

disruption of the AmyR transcription factor resulted in low levels of extracellular enzymes i.e. 

glucoamylase (GlaA) converting maltose to glucose and consequently activating a stress response 

due to low glucose levels. The low availability of glucose transferred a signal to down-regulate 

glucose transporters [94]. This is in accordance with our transcriptome results and the 

physiological response obtained in A. niger maltose cultivations (see Figure 5.1), where maltose 

degradation occurred faster than glucose uptake and metabolism leading to a high extracellular 

accumulation of glucose over time. We therefore support the conclusions from previous studies 

where it is stated that A. niger has global regulation of maltose utilization by the AmyR 

transcriptional activator. It activates genes encoding known extracellular starch degrading 
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enzymes, such as glaA. The glaA gene product, an extracellular glucoamylase, can convert 

extracellular maltose to extracellular glucose and then glucose can be taken up by glucose 

transporters. Figure 5.4 illustrates the proposed different mechanisms for global regulation of 

maltose utilization between A. oryzae (Panel A) and A. niger (Panel B). 

 

MLT

GLC

G6P

Central carbon metabolism

MLT

(A)

Maltose permease 

Maltase

Other enzymes

MLT

G6P

F6P

Central carbon metabolism

GLC

(B)

Hexose transporter

Glucoamylase

Other enzymes

GLC

MALT

MALR

MALS

AmyR glaA

 
 

Figure 5.4 Diagram shows comparative maltose utilization and global regulation in A. 

oryzae (A) and in A. niger (B). 

 

Key metabolites identification and metabolic subnetworks analysis 

In order to analyze the overall metabolic responses to changes in the carbon source, i.e. using 

glucose or maltose, we applied the reporter metabolites and subnetworks algorithm to identify 

key metabolites and to search for highly correlated metabolic subnetworks for the pairwise 

comparison [95]. This analysis relied on the reconstructed genome-scale metabolic network of 

A. oryzae (see Paper 1), and therefore we demonstrated how these metabolic networks can be 

used to map global regulatory responses in this Aspergillus spp. Figure 5.5 shows the list of 

key genes-encoding enzymes and transporters comprising the subnetwork of A. oryzae 

investigated upon a change of carbon source, from glucose to maltose. 
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Figure 5.5 Schema of key up-regulated enzymes and transporters comprising the subnetwork 

of A. oryzae in maltose condition. 

 

5.2.3 Glycerol metabolism and regulation 
In this part (see Paper 4 for full details), we aimed at the identification of global regulatory 

patterns of gene expression during a metabolic transition from repressed (glucose) to 

derepressed (glycerol) condition. We identified a conserved regulatory response among the 

three Aspergillus species, which was found to be consistent with the response reported 

previously in S. cerevisiae [96]. At the beginning, to identify conserved regulatory systems as 

well as to exploit both similarities and differences at the protein level, genes having 

orthologues in the three species were identified by using a BLASTP based comparison and 

the data sets obtained from homology search were compiled for further analysis.  

 

Pairwise glycerol versus glucose comparisons 
 

Genome-wide gene expression data was analyzed for all three sets of glucose or glycerol 

batch fermentations for the three Aspergillus species. A t-test pairwise comparison for each 

Aspergillus species on glycerol versus glucose revealed 904, 1,145 and 3,058 significantly 

differentially expressed genes for A. nidulans, A. oryzae and A. niger, respectively. 

Subsequently, these three subsets of significant genes in all three species were compared to 

the list of conserved orthologous genes in the three aspergilli as well as with each other. This 

resulted in the identification of 88 conserved genes that were differentially expressed in all 

three species. Among them, 81 genes were up-regulated during growth on glycerol, 5 genes 

were down-regulated and 2 genes did not show a clear trend. The obtained response of 88 

differentially expressed genes in the three species suggests a conserved regulatory response 

across the Aspergillus genus. From our transcriptome data through analysis of pathway 

utilization of glycerol in Aspergillus species, interestingly, the data obtained suggests that the 

catabolic pathway via glycerol 3-phosphate is the major route for glycerol catabolism in A. 

nidulans and A. niger. The genes encoding glycerol kinase as well as the genes encoding the 

FAD
+ 

dependent glycerol 3-phosphate dehydrogenase were significantly up-regulated on 

glycerol media compared to glucose media. In contrast, in A. oryzae, the most statistically 

significant up-regulated ones were the genes encoding the enzyme glycerone kinase and 
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glycerol dehydrogenase. Therefore the most active pathway in A. oryzae is probably the one 

using glycerol dehydrogenase and glycerone kinase to produce glycerone phosphate. Besides 

of a major transcriptional change in genes involved in glycerol utilization pathways, other 

metabolic changes occurred in response to polyol metabolism mainly due to a stress response. 

The polyols can be produced in high concentrations, and therefore make a significant 

contribution to the osmotic pressure in the cell. In yeast and fungi, glycerol has a role in 

regulating the osmotic pressure in the cells [97]. Here we show the presence of the High 

Osmolarity Glycerol (HOG) pathway in S. cerevisiae with comparison to the proposed HOG 

pathway for three Aspergillus speices (see full information in Paper 4).  

 

Regulation of gene expression by the Adr1 transcriptional activator 
 

One or more conserved transcriptional regulators were suspected to be up-regulating the 

subset of 81 genes or down-regulating the subset of 5 genes within the group of 88 genes 

having a conserved transcriptional response. Statistical promoter analysis was conducted for 

all three data sets of 81 up-regulated genes on glycerol medium. By inspecting the upstream 

sequences of each up-regulated orthologues dataset, giving a subset of 243 promoters (3*81 

promoters), we found the most over-represented pattern to be “TGCGGGGA”. A logo plot 

was constructed (Figure 5.6). This result suggests that these genes are up-regulated by a 

common cross species conserved transcription factor. Based on a literature search, it was 

proposed that “TGCGGGGA” is the consensus binding sequence of the transcriptional 

activator Adr1, which has been found to regulate several pathways in S. cerevisiae [96] and in 

humans [98]. The same kind of analysis was conducted with the subset of down-regulated 

genes, but no motif was found.  

 

 

Figure 5.6 Logo plot of the over-represented motif as Adr1 binding site for three Aspergillus 

species 

 

Key metabolites identification and metabolic subnetworks analysis of A. oryzae 
 

We applied the reporter metabolites algorithm and subnetworks identification [95] in order to 

examine overall metabolic responses in A. oryzae studied upon a change of a repressing 

(glucose) to a derepressing (glycerol) carbon source. Figure 5.7 illustrates the list of key 

enzymes and transporters comprising the subnetworks of A. oryzae investigated upon a shift 

of carbon source. With our expectation, we found key enzymes mainly involved in glycerol 

metabolism and fatty acid metabolism as well as linked to TCA cycle that were up-regulated 

when using glycerol compared to glucose as carbon source. For reporter metabolites analysis, 

it was interestingly found that all these key metabolites such as monoacylglycerol, 

diacylglycerol, triacylglycerol, TCA cycle intermediates in the mitochondria, i.e. succinate, 
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and some others like lactaldehyde were identified as significantly changed in A. oryzae when 

glycerol was used as a carbon source.  
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5.3 Analysis of genome-wide co-expression and co-evolution in Aspergilli 
 

One important goal of analyzing gene expression data is to identify co-expressed genes. 

Transcriptomics can be used for identification of co-expressed genes which provide hints 

toward inferring gene function based on the concept of guilt-by-association, i.e. co-expressed 

genes are likely to serve similar purposes and to be regulated by similar mechanisms [99, 

100]. In this section, we summarize genome-wide transcriptome analysis that leads to 

underline the core biological processes on both genotype and expression in different aspergilli 

and hereby identify the possible coexistence of DNA regulatory motifs and transcription 

factors. Full details of the work described in this section are given in Paper 5. 

 

In this study, we carried out cross-species analysis of genome-wide transcriptional co-

expression patterns under different growth conditions, specifically to identify concerted 

transcriptional changes of genes that clearly reflect cellular adaptations. Our analysis first 

focus on comparative analysis between A. oryzae and A. niger at the genome and the 

transcriptome levels. The results showed that most of the genes in these two species have 

similar environmental responses in terms of gene expression patterns as presented in Table 

5.4. In particular, there are many genes in cluster 1 and cluster 2 that are orthologues and co-

expressed in the two fungi. Considering cluster 1, it is clear that genes were up-regulated in 

response to growth on glycerol, which is also found by the identification of genes associated 

with the metabolic pathway of glycerol metabolism. The cluster contains a lot of co-evolved 

and co-expressed genes that has been annotated with similar functions, i.e. genes encoding 

enzymes involved in fatty acid catabolism by the beta-oxidation pathway, fatty acid transport 

(e.g. mitochondria carnitine-acylcarnitine carrier protein and peroxisomal long-chain acyl-

CoA transporter), the glyoxylate bypass, peroxisomal biogenesis and function. These were 

also found in reporter Gene Ontology (GO), such as peroxisome (GO:0005777), glyoxylate 

cycle (GO:0006097), lipid metabolic process (GO:0006629), and glycerol metabolic process 

(GO:0006071) (see Paper 5). The results indicate that there is a co-regulation of metabolic 

pathways involved in glycerol and fatty acid catabolism, probably due to the co-existence of 

these compounds as triacylglycerides and phospholipids in nature. In fungi, the beta-oxidation 

pathway has been studied for localization by Shen et al. [101], based on a large scale in silico 

screening of localization prediction for all relevant enzymes in more than 50 fungal species, 

the results showed that this pathway mainly takes place in the mitochondria and the 

peroxisome. To evaluate whether the two aspergilli contain co-evolved pathways, we mapped 

the  conserved co-expressed genes identified in cluster 1 onto the genome-scale metabolic 

networks of A. oryzae (Paper 1) [102] and A. niger [67]. Once gene-metabolic pathway 

mapping was performed, the results showed that the conserved co-expressed genes are 

involved in fatty acid catabolism by beta-oxidation. Besides, we also found enzymes/protein 

functions involved in the glyoxylate bypass and peroxisomal protein functions (peroxins) to 

be conserved. The common pathways and core protein functions for the two Aspergillus 

species are illustrated in Figure 5.8. For the genes in cluster 2, the pattern indicates up-

regulation of genes in response to growth on xylose, and not surprisingly it is found that many 

of these genes are associated with the arabinose and xylose metabolism (Table 5.4) and 

reporter GO terms like xylan catabolic process (GO:0045493), transaldolase activity 

(GO:0004801), and D-xylulose reductase activity (GO:0046526). We also performed 

mapping of the conserved genes onto the metabolic network. As expected, we found the co-

evolved pathways which are mainly involved in pentose metabolism, especially the xylose 

degradation pathway and nucleotide sugar metabolism. This result showed a good agreement 

with our previous dedicated study of the conserved response in three Aspergillus species to 

growth on xylose (see Paper 2). 
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Table 5.4 Gene expression profiles and cluster patterns of A. oryzae and A. niger 

Gene expression profiles Cluster patterns* 

Number of co-expressed

genes in cluster

Over-represented

metabolic pathway

1. Glucose

2. Glycerol
3. Maltose
4. Xylose

1. Glucose

2. Glycerol
3. Maltose
4. Xylose

1. Glucose
2. Glycerol
3. Maltose
4. Xylose

1. Glucose
2. Glycerol
3. Maltose

4. Xylose

1. Glucose
2. Glycerol

3. Maltose
4. Xylose

1. Glucose

2. Glycerol
3. Maltose
4. Xylose

Cluster 2

Cluster 4

Cluster 5

Cluster 6

Total gene number: 777 (238)#

A. oryzae : 290 genes
A. niger : 487 genes

Total gene number: 172 (23)#

A. oryzae : 120 genes
A. niger : 52 genes

Glycerol metabolism
Glycolysis and gluconeogenesis

Propanoate and butanoate metabolism
Polysaccharide metabolism

Valine/leucine/isoleucine metabolism
Phenylalanine/tyrosine/tryptophan

biosynthesis

Total gene number: 152 (2)#

A. oryzae : 138 genes
A. niger : 14 genes

Arabinose and xylose metabolism

Pentose phosphate pathway
Polysaccharide metabolism

Total gene number: 160 (7)#

A. oryzae : 100 genes

A. niger : 60 genes

Total gene number: 30 (1)#

A. oryzae : 7 genes

A. niger : 23 genes

Total gene number: 83 (14)#

A. oryzae : 32 genes

A. niger : 51 genes

Polysaccharide metabolism
Pyruvate metabolism

Phenylalanine/tyrosine/tryptophan
biosynthesis

Polysaccharide metabolism

Carbohydrates transport
Other compounds transport

ND

Cluster 3

Cluster 1

 
*
Cluster patterns: The x axis represents the four different carbon sources investigated: 1 - 

Glucose; 2 - Glycerol, 3 - Maltose; 4 - Xylose; the y axis represents normalized gene 

expression intensities.  
#
Number of orthologous genes across two aspergilli 

ND: Not Detectable 
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5.3.1 Analysis of DNA regulatory motif and transcription factor underlying co-

expression 
 

Genes with similar expression profiles will often have their promoter regions bound by 

common transcription factors at specific motifs and potentially regulated through common 

regulatory mechanisms. By promoter sequence analysis, we sought potential regulatory motifs 

in the upstream DNA sequences and further searched for the corresponding transcription 

factors that underlie the transcriptional co-expression patterns. The 1,000 base pairs (bp) of 

the upstream regions from the start codon of relevant genes in each cluster were analyzed to 

find the most over-represented common motif (see Methods in Paper 5). For example, for the 

genes belonging to cluster 1, a 1 kilo base pairs (kbp) upstream sequence from the start codon 

was scanned to identify an over-represented pattern. This was done for all the genes (see 

Table 5.4) from the A. oryzae genome (290 genes) and the A. niger genome (487 genes). 

Hereby we identified the motif, “CCTCGG” (reverse complement, “CCGAGG”) for this 

cluster. Several other common motifs of other genes in the other co-expression clusters were 

also found and the corresponding logo plots of all detected motifs are presented in Table 5.5. 

 

In order to analyze a transcription factor that potentially bind to the identified DNA motifs, 

we compared the motifs with known or predicted Aspergillus consensus motifs from the 

public databases or the literature. We found that four out of six of the over-represented motifs 

are highly conserved to fungal species which allowed for identification of putative 

transcription factors as summarized in Table 5.5. The identified motifs were consistent with 

known binding sites of known transcription factors in aspergilli, such as FarA [103], FarB 

[103], XlnR (see Paper 2), CreA [104] and Adr1 (see Paper 4). As described above, the core 

cellular processes with co-evolution and co-expression found in cluster 1, are likely regulated 

by the FarA and the FarB proteins that can potentially bind to the over-represented motif 

pattern “CCTCGG”. There are few studies on these proteins that are existing in both the 

genome of A. oryzae and A. niger. However, a number of studies have been reported that the 

Far protein family governs transcriptional activator controlling the utilization of fatty acids in 

several fungi [103]. 

 

An elegant study presented by Hynes et al. [103], showed that these transcription factors FarA 

and FarB can bind to DNA sequences at 5′ region of a large number of genes involved in fatty 

acid catabolism and related processes in A. nidulans. Following their results, they concluded 

that FarA and FarB mainly induce genes via binding to the 6-bp core sequence “CCTCGG” in 

the 5’ regions. They also found that the genes involved in catabolism of fatty acid have a high 

enrichment of the core motif on their promoters. From their conclusions, we further 

performed our analysis of occurrence of “CCTCGG” sequence in the upstream regions of core 

genes that have transcriptional co-expression and co-evolution in cluster 1, and which have 

cellular processes related to those reported by Hynes and coworkers [103]. The results clearly 

showed that this pattern was also enriched in genes involved in fatty acid catabolism, 

glyoxylate bypass and peroxisome biogenesis (see Paper 5). Based on this, we postulate that 

the core cellular processes are all conserved at the genetic, transcriptional and regulatory level 

in A. oryzae and A. niger.   
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Table 5.5 List of identified putative DNA regulatory motifs and transcription factors 

Features Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

DNA regulatory motifs

Putative transcription
factors

FarA
FarB

XlnR CreA Adr1 Unknown Unknown

 

Conserved FarA and FarB transcription factors in aspergilli 
 

Both FarA and FarB proteins are classified as Zn(II)2Cys6 transcription factors.  FarA is 

required for induction by both short- and long-chain fatty acids, while FarB is likely required 

only for short-chain fatty acid induction in A. nidulans [103].  As shown in Figure 5.9, we 

found highly conserved protein sequences of FarA and FarB across 8 species, A. nidulans 

(two strains), A. oryzae and A. niger (two strains), A. flavus, A. clavatus, A. terreus, A. fischeri 

and A. fumigatus (two strains). As shown in the phylogenic tree, considering known 

conserved domains analysis, the FarA protein contains both of a Zn2-Cys6 binuclear cluster 

domain (PF00172) and a fungal specific transcription factor domain (PF04082) that are 

conserved for all 8 species. For the FarB protein, we could not identify a conserved domain of 

the Zn2-Cys6 binuclear cluster (PF00172) in the A. niger strain ATCC 1015 and in A. terreus, 

while we found this domain in the other aspergilli. According to the conserved domains 

analysis, both proteins FarA and FarB have the similar architecture of the two conserved 

domains, and from these results, we can conclude that these transcription factors are 

evolutionary conserved among aspergilli. We further evaluated whether the FarA and the 

FarB proteins are conserved among other fungi, and here it is found to be highly homologue 

to genes identified in Penicillium spp, Fusarium spp, Neurospora spp, Sclerotinia spp, 

Ajellomyces spp, Paracoccidioides spp, Coccidioides spp, Talaromyces spp and Microsporum 

spp, whereas there is no conservation to yeast genes (see full details in Paper 5). Through this 

study, one can obtain a better understanding of the complex relationships between co-

expression of genes. We found that FarA and FarB are conserved regulators of aspergilli that 

govern regulation of co-evolved and co-expressed genes related with core biological 

processes. Our work therefore improved functional annotation and the reconstruction of gene 

regulatory network in aspergilli. 
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Figure 5.9 Phylogeny and conserved domains analysis of FarA and FarB proteins in 8 

Aspergillus species 

 

 

 

 

 

 

 

 

 

 

 

 

 



Wanwipa Vongsangnak 

 

42 

 

Chapter 6 

6. Protein production by A. oryzae 
 

A. oryzae has a very high natural protein secretion capacity, which enables high level 

production of many fungal enzymes that find applications in the technical, feed and food 

industries. In connection with sustainable development of chemicals and biofuel productions, 

raw materials such as starches, celluloses, and hemicelluloses are widely used in production 

of e.g. ethanol and lactic acid. In order to degrade starch to glucose, there is a need for 

efficient enzyme biocatalysts.  A. oryzae seems to be a producing organism that secretes 

significant amounts of α-amylases that break polysaccharides into sugars which are further 

fermented by yeast and lactic acid bacteria [105]. Therefore a demand for α-amylase 

production is growing at a fast pace. Despite the industrial importance of A. oryzae as 

mentioned, there is relatively little known information about its fundamental process of 

protein production. Such knowledge is quite important for optimization of an industrial 

enzyme fermentation process. For example, information about which genes/pathways are key 

players/targets for high level protein production. 

 

In this study, the aim was to perform integrative data analysis (i.e. genomes, transcriptomes, 

metabolic networks, interactomes and fluxes) for diagnosis of industrial enzyme production in 

fermentation process. Our integrative approach involves comparative transcriptome analysis 

of a high-producing strain of α-amylase with a reference strain. We compared the A. oryzae 

transformant strain CF1.1 that contains multiple additional gene copies of the α-amylase 

production strain with the wild type strain A1560. To identify fundamental metabolic process 

of protein production, we further combined the genome-scale metabolic network of A. oryzae 

(Paper 1) [102] with the transcriptome data. Moreover, analysis of the global regulatory 

structure underlying protein synthesis and secretion was also analyzed. We further 

reconstructed an interaction network of A. oryzae based on identification of putative 

components through comparative genomics and interactomics (e.g. protein-protein 

interaction) between A. oryzae and S. cerevisiae. The reconstructed interaction network was 

used for identification of key proteins in the transcriptional response to high-level protein 

production. Additionally, flux calculation was performed for analysis of amino acid 

consumption for protein production.  

 

Here we summarize the integration of these multiple data dimensions for diagnosis of the 

protein production process. We present the key players/targets (i.e. genes, enzymes, proteins, 

metabolites and pathways) in response to protein production that may lead us to further 

improve industrial enzyme fermentation processes. Full details of this study are given in 

Paper 6. 

 

6.1 Growth physiology  
 

The growth physiology of the two A. oryzae strains was examined in well-controlled 

bioreactors. Batch cultures were carried out using the same defined salt medium with glucose 

or maltose as the carbon source (see Paper 6). Three biological replicates cultivations were 

performed for each strain and each carbon source. The results illustrated in Figure 6.1 (panel 

A) present profiles of the growth and α-amylase enzyme activity of the two strains (wild type 

strain A1560 and transformant strain CF1.1) for each carbon source (glucose or maltose). 

Panel B summarizes the physiology data for the batch cultures. Comparison of the 

fermentation profiles of the two strains showed that the wild type strain A1560 has a slightly 

higher maximum specific growth rate than the transformant strain CF1.1, but the maximum 
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activity of extracellular α-amylase enzyme produced was higher for the transformant strain 

CF1.1 than for the wild type strain A1560. For growth on glucose, the increase was 

approximately 2.3-fold higher for transformant strain CF1.1, whereas for the maltose medium 

the enzyme production was approximately 4-fold higher for the transformant strain CF1.1 

than for the wild type strain A1560 (see Figure 6.1). These results raised an important 

question: what are the key players/targets that cause increased level of protein production of 

transformant strain CF1.1 (compared to wild type strain A1560)? To find out the key 

players/targets and their functional roles, comparative transcriptome analysis was performed 

as described in the following section. 
(A)
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Figure 6.1 Fermentation profiles of A. oryzae  

(A) Growth and enzyme activity profiles of two strains (i.e. wild type strain A1560 and 

transformant strain CF1.1) during growth on glucose and maltose as carbon sources.   

(B) Overview of time for sampling for transcriptome analysis, the maximum specific growth 

rate, biomass concentration at the sampling time and the maximum enzyme activity for the 

two strains grown on the two different carbon sources. For all values, average values and 

standard deviations for the three replicates are shown. 
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6.2 Comparative transcriptome analysis  

To identify the key players/targets for α-amylase production in A. oryzae, the genome-wide 

gene expression data obtained from wild type A1560 and transformant CF1.1 cultivations 

were pairwise compared for each of the two carbon sources (either glucose or maltose). To 

detect transcriptional changes in response to the strain background, Student’s t-test statistics 

was used to identify significantly different gene expression levels with a p-value cut-off of 

0.05. To avoid influence of carbon source, the list of conserved genes that respond to the 

strain background for each carbon source was overlapped. Figure 6.2 shows 2,560 overlapped 

genes that were significantly differentially expressed in the two A. oryzae strains. Among 

these 2,560 genes, 1,916 (~75%) were up-regulated genes in the transformant strain CF1.1. 

Based on gene classification of A. oryzae from the Database Of the Genomes Analyzed at 

NITE (DOGAN) database [71], we found that 474 out of the 2,560 genes were involved in the 

functional category of protein synthesis and secretion. These results are highly reasonable as 

α-amylase is a protein and therefore not surprisingly the process of synthesis and secretion of 

protein is significantly changed in the transformant strain CF1.1. In addition, we also 

classified the protein synthesis and secretion into sub-functional categories (see Paper 6). 

Hereby we found many genes involved in RNA processing and translation as well as post-

translation modification and secretion process. A number of genes with relative difference in 

gene expressions between the transformant CF1.1 and the wild type A1560 were also found 

(e.g genes encoding protein functions involved in energy metabolism, amino acid metabolism, 

DNA processing and transcription, and cellular development process). The results are shown 

in Figure 6.2. 
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Figure 6.2 Bar graph representing significantly differentially expressed genes between the 

transformant strain (CF1.1) and the wild type strain (A1560), distributed into different 

functional categories. 
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6.2.1 Key metabolites and metabolic subnetworks analysis in response to 

protein production 

 
The reporter metabolites and subnetworks algorithm was applied to identify key metabolites 

involved in protein production and to search for highly correlated metabolic subnetworks for 

the pairwise comparison [95]. This analysis relies on the reconstructed genome-scale 

metabolic network of A. oryzae (Paper 1) [102] and gene expression data. Here, we 

demonstrated how a metabolic network can be used to map global regulatory responses for 

protein production in A. oryzae. The top 25 high-scoring key metabolites for A. oryzae are 

listed in Table 6.1.  

The fact that tRNA (both cytosol and mitochondria tRNA) was identified as a key metabolite 

is biologically reasonable, as charged tRNAs are precursors for protein synthesis. Of the 25 

metabolites, 20 key metabolites are involved in purine and pyrimidine nucleotide 

biosynthesis, namely 5-phospho-α-ribosyl-1-pyrophosphate (PRPP), mitochondria and cytosol 

pyrophosphate (PPI), inosine monophosphate (IMP), xanthosine monophosphate (XMP), 

guanosine monophosphate (GMP), mitochondria and cytosol adenosine monophosphate 

(AMP), adenosine triphosphate (ATP), deoxy-uridine monophosphate (dUMP), deoxy-

guanosine monophosphate (dGMP), guanine, adenine, cytosine, ADP-ribose, 3’,5’-cyclic 

deoxy-adenosine  monophosphate (cdAMP), 3’,5’-cyclic inosine monophosphate (cIMP), 

3’,5’-cyclic adenosine monophosphate (cAMP), 3’,5’-cyclic guanosine monophosphate 

(cGMP), and 3’,5’-cyclic cytosine monophosphate (cCMP). The results are in agreement with 

classical molecular biology, where formation of ribonucleic acid (RNA) and deoxyribonucleic 

acid (DNA) is very important in protein synthesis. Besides, we found that ferricytochrome C 

and ferrocytochrome C are involved in energy metabolism and also nicotinate-D-

ribonucleotide is involved in nicotinate and nicotinamide metabolism. In addition to key 

metabolites, we also identified key enzymes or transporters in response to increased protein 

production. We performed metabolic subnetworks analysis using the whole reaction set from 

the reconstructed metabolic network of A. oryzae (Paper 1) [102].  Figure 6.3 captures key 

genes encoding enzymes in nucleotide metabolism (purine and pyrimidine biosynthesis) and 

key genes encoding enzymes involved in amino acid metabolism that are significantly 

changed in the metabolic subnetworks identified from pairwise strains comparison in A. 

oryzae (wild type strain A1560 vs. transformant strain CF1.1).  
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Table 6.1 Reporter metabolites analysis  

 

High α-amylase producer strain (CF1.1) versus reference strain (A1560) 

Key metabolite P-value 

Pyrophosphate (PPI) 4.62E-04 

Guanosine monophosphate (GMP)  8.81E-04 

tRNA 1.02E-03 

Pyrophosphate (PPI), mitochondria 2.68E-03 

Inosine monophosphate (IMP) 3.98E-03 

Adenosine monophosphate (AMP), mitochondria 4.04E-03 

Adenosine monophosphate (AMP) 5.02E-03 

tRNA, mitochondria 6.85E-03 

xanthosine monophosphate (XMP) 9.43E-03 

Ferricytochrome C, mitochondria 1.11E-02 

Ferrocytochrome C, mitochondria 1.11E-02 

Adenosine triphosphate (ATP) 1.22E-02 

3’,5’-cyclic adenosine monophosphate (cAMP) 1.23E-02 

Adenine 1.30E-02 

5-phospho-α-ribosyl-1-pyrophosphate (PRPP) 1.52E-02 

deoxy-uridine monophosphate (dUMP) 1.63E-02 

Nicotinate-D-ribonucleotide  1.67E-02 

Cytosine 1.75E-02 

deoxy-guanosine monophosphate (dGMP) 2.02E-02 

Guanine 2.27E-02 

ADP-ribose 2.89E-02 

3’,5’-cyclic deoxy-adenosine  monophosphate (cdAMP) 2.99E-02 

3’,5’-cyclic inosine monophosphate (cIMP) 2.99E-02 

3’,5’-cyclic guanosine monophosphate (cGMP) 2.99E-02 

3’,5’-cyclic cytosine monophosphate (cCMP) 2.99E-02 

Reporter metabolite analysis identified metabolites around which the most significant 

transcriptional changes occur. The algorithm used the pairwise t-test analysis referring to 

strain background effect as an input. The P-value gives a measure of significance and all 

results with P< 0.03 are reported. 
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6.2.2 Identification of key proteins in response to protein production 
 

In order to find key proteins regulating the global transcriptional response to the increased 

protein production level, the reporter features algorithm [106] was applied. In this study, the 

reporter features for key protein identification is based on reconstructed networks covering 

each protein-protein interaction combined with gene expression data. In order to apply the 

algorithm, we first needed to reconstruct a protein-protein interaction network of A. oryzae 

(see Methods in Paper 6). Each protein pairs from yeast S. cerevisiae BIOGRID database 

[107] was used as a query interaction and searched against A. oryzae genes obtained from 

pairwise protein sequences comparison (see Methods in Paper 6). Considering only 1:1 

orthologous genes of A. oryzae and S. cerevisiae, we identified 3,514 genes. We searched 

140,849 protein pairs of S. cerevisiae used as a query interaction database against the 3,514 

genes of A. oryzae to reconstruct a putative protein-protein interaction network (hypothesis 

presented by Jonsson et al. [108]  and as described in Methods (see section Reconstruction of 

protein-protein interaction network in Paper 6). The reconstructed interaction network of A. 

oryzae contains 2,704 individual proteins with 48,483 putative interactions of protein pairs. In 

order to identify key proteins, the gene expression data set from comparative transcriptome 

analysis were combined with the reconstructed network of A. oryzae.  

 

Applying the reporter features algorithm with specific thresholds (see Methods in Paper 6), 

we could identify 33 proteins (see Figure 6.4) that are possible to be the key targets in gene 

expression regulation in response to increased protein production. These 33 proteins can be 

divided into five functional groups, namely 4 proteins involved in transcription, 8 proteins 

involved in RNA processing and translation, 6 proteins involved in the proteasome, 7 proteins 

involved in post-translation modification and protein secretion, and 8 proteins involved in cell 

cycle and structure.  In the following, we discuss two interesting cases of how increased 

enzyme production causes a global response in A. oryzae and hereby may impact the overall 

physiology of the organism.   
 

Proteasome

Post-translation modification

and protein secretion

Transcription

Cell cycle and structure

RNA processing and 

translation

 

Figure 6.4 An interaction network of 33 key proteins identified as a global response to 

increased protein production. The connectivity among the proteins (the nodes) is based on the 

interactions stored at the BIOGRID database [107] of the yeast S. cerevisiae. The network 

was drawn by using Cytoscape [109]. 
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Analysis of general amino acid control 

Not surprisingly, the key proteins are involved in process of protein synthesis and secretion 

since the pairwise t-test analysis from two strains comparison was used as input for the 

network analysis. The applied reporter features algorithm can identify regulatory hot-spots in 

bio-molecular interaction networks that are significantly affected in response to different 

conditions. An important regulatory hot-spot is the S. cerevisiae protein kinase GCN2 or the 

Aspergillus homologue CpcC involved in RNA processing and translation process (see Figure 

6.4). GCN2/CpcC is known as a sensor for amino acid abundance. It usually enhances the 

sensitivity of translation of the transcriptional activator GCN4 (as named in S. cerevisiae) or 

CpcA (as named in Aspergillus species), leading to transcriptional induction of multiple genes 

encoding amino acid biosynthetic enzymes upon amino acid starvation [110]. In S. cerevisiae, 

this phenomenon is called “general control of amino acids”, whereas in Aspergillus species, 

this event is named “cross pathway control of amino acid biosynthesis”. Evidently, if the 

presence of the general control/the cross pathway control of amino acid biosynthesis occurs 

via the GCN2/CpcC protein kinase, then increased expression of multiple enzymes in 

different amino acid biosynthetic pathways is found [110]. Since the reporter features analysis 

identified GCN2/CpcC as one of the regulatory hot-spots, we hypothesize that the cross 

pathway control of amino acid biosynthesis in A. oryzae is likely to occur in connection with 

the increased protein production. 

 

To test our hypothesis, we used the amino acid biosynthetic enzymes that are known to be 

under general amino acid control in yeast, fungi and bacteria [110, 111] as a query list and 

searched against our comparative transcriptome data between the wild type strain A1560 and 

the transformant strain  CF1.1 in order to see if we could find these enzymes. As expected, we 

found several enzymes that are targets for cross pathway control of amino acid biosynthesis in 

A. oryzae, and this indicates that amino acid starvation is likely to occur in the transformant 

CF1.1 as most of the genes encoding amino acid enzymes were up-regulated, such as multiple 

enzymes in tyrosine, tryptophan, ariginine, histidine, lysine, isoleucine, valine, and general 

aromatic amino acids biosynthesis. A list of the enzymes subject to the cross pathway control 

is given in Table 6.2. 

 

Analysis of occurrence of Unfolded Protein Response (UPR) 

HAC1 was also identified as one of the key proteins in the protein-protein interaction 

network. This protein is a key regulatory component of UPR pathway that is activated in 

response to poor protein folding that leads to block in the protein secretion pathway, which is 

obviously an important step for protein production. In eukaryotic cells, the synthesized 

proteins are folded and assembled in the Endoplasmic Reticulum (ER). The ER provides an 

oxidising environment in which protein folding is assisted by a number of molecular 

chaperones and folding enzymes. Protein folding in the ER can be compromised by several 

endogenous and exogenous factors such as changing environmental conditions or genetic 

perturbations. This event leads to the accumulation of unfolded proteins within the ER and 

this lead to ER stress conditions. To maintain homeostasis of ER functions, the cell reacts to 

the accumulation of unfolded proteins in the ER by inducing a pathway known as the UPR. 

The UPR pathway has been studied in A. oryzae [112] and four key components of this 

pathway are: (1) The HAC1 protein is a transcriptional activator that up-regulates the 

transcription of various target-genes of the UPR pathway; (2) The Bip protein is a chaperone 

of the HSP70 class that plays an important role in the UPR; (3) The Pdi is a luminal ER 

enzyme that catalysts the mechanism of disulfide bond formation; (4) The Ppi is an enzyme of 
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catalyzing the cis-trans isomerisation of a peptide bond on the N-terminal side of proline 

residues in polypeptides. 

 

Since the reporter features algorithm revealed that HAC1 is an important protein in response 

to the protein secretion, we reasoned that the UPR pathway is activated in the α-amylase over-

producing strain CF1.1. To test our assumption, three UPR-relevant genes known to be 

controlled by HAC1 in A. oryzae were selected, and our transcriptome results showed that the 

UPR pathway is very likely to be active, since the three target genes in the UPR pathway were 

up-regulated in the transformant strain CF1.1, namely AO090003000257 gene-encoding Bip 

protein, AO090001000733 gene-encoding Pdi protein, AO090023000811 gene-encoding Ppi 

protein.  
 

6.3 Analysis of amino acid consumptions 

We performed comparative analysis of amino acid consumptions in terms of flux calculations 

for synthesis of protein content in biomass and α-amylase between the two strains (wild type 

A1560 and transformant CF1.1). Based on the amino acid composition in biomass protein and 

α-amylase, the specific consumption rate of each of the 20 amino acids (as mmol/gDW/h) 

was calculated for the two strains. In terms of flux calculation (see more information in Paper 

6), we found that in particularly four amino acids are drained substantially more in the CF1.1 

strain due to the over-production of α-amylase, and the biosynthesis of these amino acids 

could be possible targets for further increasing the protein production by the transformant 

strain CF1.1. These four candidate amino acids are tyrosine, aspartate, cysteine and threonine.  

 

6.4 Integrated data analysis as a scaffold for diagnosis of industrial enzyme 

fermentation process 
 

We demonstrated that by performing integrated data analysis, i.e., genomes, transcriptomes, 

interactomes (protein–protein interaction), metabolic networks and flux calculations, it is 

possible to identify key metabolic/regulatory pathways involved in protein production. From 

comparative transcriptome analysis of two strains (wild type A1560 and transformant CF1.1), 

we identified that several key processes involved in protein synthesis and secretion are 

affected at the transcriptional level in response to high-level protein production. We found 

key metabolites and key enzymes in nucleotide metabolism (purine and pyrimidine 

biosynthesis) used for synthesis of DNA and RNA (i.e. mRNA, tRNA and rRNA). In 

addition, we found several amino acid biosynthetic enzymes whose genes are significantly 

changed in the metabolic subnetworks with respect to protein production, such as tyrosine, 

aspartate, cysteine and threonine (see Figure 6.3). The results obtained from flux calculations 

support that these four amino acids play the key roles for increased α-amylase production. To 

find out key regulatory steps, an interaction network (protein-protein interaction) of A. oryzae 

was reconstructed. The reporter features algorithm was applied to this network and hereby 33 

proteins were identified that are possible key targets regulating gene expression in response to 

increased level of protein production. 2 proteins out of the 33 proteins, namely GCN2/CpcC 

and HAC1, suggest that the limiting step for production of α-amylase is the control of general 

amino acids upon starvation and the lack of folding capacity in the ER resulting in an UPR. In 

addition to these 2 proteins, the other key proteins also imply that other steps in protein 

production are limited, such as transcription, RNA processing and translation, post-

translational modification, and proteasome degradation.  
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From this study, one can obtain a better understanding of the complex relationship of 

biological processes in response to high level protein production. Our work therefore revealed 

the key players/targets (i.e. genes, enzymes, proteins, metabolites and pathways) in response 

to α-amylase production that may lead us to further improvements of industrial enzyme 

fermentation processes. We believe that the integrated data analysis can be a scaffold for 

identifying possible limiting steps for protein production and hereby strategies for strain 

improvement or process optimization of A. oryzae in relation to industrial enzyme production. 

 

Table 6.2 List of enzymes subject to general amino acid control/cross pathway control targets 

(p-value<0.05) 
 

Gene name  Enzyme name Common name Up/down  

Tryptophan biosynthesis    

AO090012000581 Anthranilate synthase (Multifunctional protein) TRP2 Up 

AO090012000581 indole-3-glycerol-phosphate synthase TRP3 Up 

AO090012000581 phosphoribosylanthranilate isomerase TRP1 Up 

AO090003001011 Anthranilate phosphoribosyltransferase TRP4 Up 

AO090005001315 Tryptophan synthase beta chain TRP5 Up 

Arginine biosynthesis   

AO090026000498 Acetylglutamate kinase ARG2 Up 

AO090026000498 Acetylglutamate synthase ARG6 Up 

AO090020000418 Argininosuccinate lyase ARG4 Up 

AO090701000214 

Multifunctional pyrimidine synthesis protein 

CAD (includes carbamoyl-phophate synthetase, 

aspartate transcarbamylase, and glutamine 

amidotransferase) 

CPA1 Down 

Histidine biosynthesis   

AO090206000105 Histidinol-phosphatase HIS2 Up 

AO090012000450 Histidinol phosphate aminotransferase HIS5 Up 

Lysine biosynthesis    

AO090026000245 Transaminases (Aromatic aminotransferases)  Up 

AO090001000516 
Alpha-aminoadipate reductase and related 

enzymes 
LYS2 Up 

Isoleucine and valine biosynthesis   

AO090166000076 Acetolactate synthase, large subunit ILV2 Up 

Leucine biosynthesis   

AO090010000218 Isoleucyl-tRNA synthetase ILS1 Up 

Tyrosine biosynthesis 
Tyrosine decarboxylase  Up 

AO090003000301 

AO090001000383 Tyrosinase  Up 
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7. Conclusions and Future perspectives 
The work presented in this thesis deals with development of SYStems biology tools and 

BIoinformatics methods to analyze multi-level OMICS data. SYSBIOMICS is a novel term 

defined from this Ph.D. study. We applied SYSBIOMICS approach aiming at the construction 

of a genome-scale metabolic model of A. oryzae. This model was further used for high- 

throughput omics data analysis from industrial fermentations for investigating cellular 

metabolism and regulation in A. oryzae and mainly comparative analysis with A. niger and A. 

nidulans. Beyond regulation and metabolism, the work also contributed towards integrated 

data analysis for studying genotype-phenotype relationships and further identifying possible 

key players/targets for improvements of industrial enzyme production. Based on the 

SYSBIOMICS approach, we believe that it will find wide applications in industrial 

biotechnology and life science in the future.  

 

The main conclusions of this work can be summarized in three points as follows: 

 
• Improved annotation through development of metabolic model of A. oryzae at a 

genome-scale 

With a complete genome sequence of A. oryzae becoming available and top-down 

reconstruction of a metabolic network developing fast and now in wide use, it has 

opened possibilities for studying the cellular physiology of this fungus on a systematic 

level. To explore this, we developed bioinformatics methods for improved annotation 

of the genome sequence of A. oryzae. We performed gene discovery and validation by 

using an EST library as well as assignment of protein function by using advanced 

bioinformatics algorithms.  The resulting improved annotation was used to reconstruct 

the metabolic network leading to a genome scale metabolic modeling of A. oryzae. 

With the case study (Chapter 4), we present a framework for the systems biology 

paradigm to link a component (gene), to its function, further to a biological network, 

and finally to a functional model that can describe the physiology of the organism. The 

model serves as an important resource for gaining further insight into our 

understanding of the A. oryzae physiology and it can also be applied as a scaffold for 

integrated data analysis.  

 

• Investigation of cellular metabolism and regulation in aspergilli 
 

Carbon metabolism and its regulation is one of the most intensively studied in many 

different organisms and it represents a complex metabolic system. Here a case study 

(Chapter 5), on how the carbon source affects transcription of genes, is presented. To 

investigate this principle, an Affymetrix GeneChip was designed for transcriptome 

analysis of three Aspergillus species, and the DNA microarray was used for 

transcriptome analysis of mainly A. oryzae but with cross-species analysis of 

expression data from A. niger and A. nidulans on four different carbon sources (i.e. 

glucose, xylose, maltose and glycerol). With this case study, we present the developed 

tool for transcriptome analysis of three Aspergillus species and our methodology for 

conducting cross-species evolutionary studies within a genus using comparative 

genomics and transcriptomics. 

 

• Protein production by A. oryzae  
With integrated data analysis (i.e. genomes, transcriptomes, metabolic networks, 

interactomes and fluxes), we performed comparative analysis of high and low level α-

amylase production in A. oryzae in order to identify key players/targets involved in 
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high-level protein production. From this case study (Chapter 6), some possible key 

players/targets in protein production were identified and these can be used for 

diagnosis of industrial enzyme production in fermentation process and for further 

improvement of industrial strains used for protein production. 
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Abstract
Background: Since ancient times the filamentous fungus Aspergillus oryzae has been used in the
fermentation industry for the production of fermented sauces and the production of industrial
enzymes. Recently, the genome sequence of A. oryzae with 12,074 annotated genes was released
but the number of hypothetical proteins accounted for more than 50% of the annotated genes.
Considering the industrial importance of this fungus, it is therefore valuable to improve the
annotation and further integrate genomic information with biochemical and physiological
information available for this microorganism and other related fungi. Here we proposed the gene
prediction by construction of an A. oryzae Expressed Sequence Tag (EST) library, sequencing and
assembly. We enhanced the function assignment by our developed annotation strategy. The
resulting better annotation was used to reconstruct the metabolic network leading to a genome
scale metabolic model of A. oryzae.

Results: Our assembled EST sequences we identified 1,046 newly predicted genes in the A. oryzae
genome. Furthermore, it was possible to assign putative protein functions to 398 of the newly
predicted genes. Noteworthy, our annotation strategy resulted in assignment of new putative
functions to 1,469 hypothetical proteins already present in the A. oryzae genome database. Using
the substantially improved annotated genome we reconstructed the metabolic network of A.
oryzae. This network contains 729 enzymes, 1,314 enzyme-encoding genes, 1,073 metabolites and
1,846 (1,053 unique) biochemical reactions. The metabolic reactions are compartmentalized into
the cytosol, the mitochondria, the peroxisome and the extracellular space. Transport steps
between the compartments and the extracellular space represent 281 reactions, of which 161 are
unique. The metabolic model was validated and shown to correctly describe the phenotypic
behavior of A. oryzae grown on different carbon sources.

Conclusion: A much enhanced annotation of the A. oryzae genome was performed and a genome-
scale metabolic model of A. oryzae was reconstructed. The model accurately predicted the growth
and biomass yield on different carbon sources. The model serves as an important resource for
gaining further insight into our understanding of A. oryzae physiology.
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Background
A. oryzae is a member of the diverse group of aspergilli that
includes species that are important microbial cell facto-
ries, as well as species that are human and plant pathogens
[1]. A. oryzae has been used safely in the fermentation
industry for hundreds of years in the production of soy
sauce, miso and sake. Today A. oryzae is also used for pro-
duction of a wide range of different fungal enzymes such
as α-amylase, glucoamylase, lipase and protease and it is
regarded as an ideal host for the synthesis of proteins of
eukaryotic origin [1]. In the post genome-sequencing era,
various high-throughput technologies have been devel-
oped to characterize biological systems on the genome-
scale [2]. Discovering new biological knowledge from
high-throughput biological data and assigning biological
functions to all the proteins encoded by the genome is,
however, challenging and allowing systems level investi-
gations of microbial cell factory. For fungi, several
genome-sequencing and annotation projects have been
presented, including Saccharomyces cerevisiae [3], A. nidu-
lans [4], A. fumigatus [5], and A. niger [6,7]. Recently,
genome sequence of A. oryzae by Machida and his cowork-
ers has been published [8]. Based on their sequence anno-
tation using gene-finding software tools such as ALN [9],
GlimmerM [10] and GeneDecoder [11], this analysis
12,074 genes encoding proteins were predicted to be
present in the genome [8]. Despite this prediction many
genes had not been assigned a definite function, and of
the 12,074 genes, more than 50% were annotated as
hypothetical proteins. Hence, there are clearly opportuni-
ties for refining the gene prediction and improving the
annotation. However, the present one dimensional data
does not allow for complete annotation of all genes and it
would therefore be interesting and potentially fruitful to
use integrative biological tools in the process of improv-
ing the annotation of fungal genomes [12]. In this process
reconstruction of a genome-scale metabolic model is a
good starting point as it allows for integration of various
types of data. Nowadays, there are several open sources of
fungal metabolic models, such as for S. cerevisiae [13], A.
nidulans [14], A. niger [15] and a model for the central car-
bon metabolism of A. niger [16]. These models currently
are prominent as one of the most promising approaches
to achieve an in silico prediction of cellular function in
terms of physiology [17].

The aim of this study is to improve the annotation of the
genome sequence of A. oryzae and further integrate
enhanced annotated data to construct a genome-scale
metabolic model of A. oryzae. The first A. oryzae EST
library, sequencing and assembly were performed in order
to improve gene prediction. Then functional assignment
was done by our developed annotation strategy and a
combination of different bioinformatics tools and data-
bases. The bioinformatics tools used were BLAST [18],

HMMER [19], and PSI-BLAST [20]. Several databases used
were namely the A. oryzae genome database [21], the EST
database of A. flavus [22], the A. nidulans genome database
[23], the A. fumigatus genome database [24], the S. cerevi-
siae genome database [25], the Pfam protein families
database [26], the COG database [27], and the Non-
Redundant (NR) protein database [28]. Subsequently,
manual inspection was through in order to achieve a solid
annotation for enzyme functions that were needed for
reconstruction of the metabolic network. Based on the
improved annotated genome, the genome-scale meta-
bolic network was reconstructed. The network was built
by comparison with other related metabolic models,
namely models for S. cerevisiae [13], A. nidulans [14], and
A. niger [15,16], and biochemical pathway databases, lit-
erature, as well as experimental evidence for the presence
of specific pathways. The biomass composition was taken
from the literature, whereas, maintenance and growth-
associated ATP consumption rates were estimated based
on literature data on yields and growth rates. Finally, Flux
Balance Analysis (FBA) was used to predict the flux distri-
butions in the metabolic network, and the biomass yields
as well as growth rates on different carbon sources were
estimated to validate the metabolic model of A. oryzae.

Results and Discussion
Gene discovery and validation
The assembled EST sequences of A. oryzae were achieved
from this study (see Additional file 1) where were depos-
ited into Genbank database under accession numbers
"EY424375–433412". Within our assembled EST data
analysis of A. oryzae, we found 9,038 EST contig sequences
with a GC content of 51.2% and an average EST length of
738 base pairs (bps). Based on analysis of sequences
obtained from Machida and coworkers [8], the A. oryzae
genome consists of eight chromosomes containing 37.2
Megabases (Mb) with a GC content of 48.2% and 12,074
annotated genes. According to the described strategy
implemented for gene finding (See Methods), the 9,038
EST sequences were searched against the 12,074 previ-
ously identified genes [8] in the sequenced genome using
various search parameters to create lists of predicted genes
with different match stringencies. Using the criteria
described in the Methods, many dissimilar sequences
between the EST sequences and previously identified gene
sequences of A. oryzae [8] were found. This suggests the
presence of many newly predicted genes. Interestingly,
approximately 12% (1,046 out of the 9,038 EST
sequences) were categorized as newly predicted genes in
the genome. Many homolog sequences were also found
strongly validating previously identified genes [8], with
approximately 75% of the total EST sequences (6,773 out
of the 9,038 EST sequences) matching earlier identified
genes (See Figure 1). To confirm that all the EST sequences
do existed in the A. oryzae genome, the 9,038 EST
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sequences were searched by BLASTN [18] against the com-
plete genome, and the results showed that only 20 EST
sequences could not be found to be present in the
genome. Therefore, this suggests that the assembled EST
data of A. oryzae had very high quality and showed an
excellent success rate for gene discovery and validation,
even though approximately 13% (1,219 out of the 9,038
EST sequences) could not be used to predict genes,
because 6% (582 out of the 9,038 EST sequences) were
too short and about 7% (637 out of the 9,038 EST
sequences) were too weakly validated in the original gene
list using a conservative cut-off. In another attempt to pre-
dict new genes in A. oryzae genome, A. flavus EST contigs
stored in the TIGR public database [22] were also used
because A. flavus and A. oryzae are very closely related [29].
Also, there is a high degree of DNA homology between the
two organisms (e.g. aflatoxin cluster > 96%) [29]. A. flavus
EST library contained 7,218 sequences with a GC content
of 49.7% and an average EST length of 636.2 bps. Using
these A. flavus EST sequences to search against the genes in
our new gene list for the A. oryzae genome, no new genes
were predicted but 3,320 genes in the A. oryzae genome
were validated by EST sequences (see Figure 1). Based on
all the results of the gene finding a total of 13,120 protein-
encoding genes were identified in the A. oryzae genome.
This total number of genes derives from 12,074 previously
annotated genes by Machida et al and 1,046 newly pre-
dicted genes from our assembled EST library.

Identification of protein functions by pairwise comparison
In order to assign protein functions to the 13,120 pre-
dicted genes, sequence alignment analysis by pairwise
comparison between A. oryzae and closely related fungi
was performed. These fungi included A. nidulans, A. fumi-
gatus and S. cerevisiae. Table 1 shows some genome char-
acteristics of the related fungi in comparison with A.
oryzae. Initially pairwise comparison was done by similar-
ity searching of the protein sequences of A. oryzae against
the protein sequences of other related fungi as described
in the Methods. With a chosen threshold of the alignment
length (bps) and identity (%), a list of putative protein
functions was created. The results are summarized in
Table 1. Pairwise comparison shows that A. fumigatus has
6,274 homologs with A. oryzae sequences. It is the highest
number of sequence homologs and this indicates the
highest percentage (88%) of the homologs obtained
between the three species tested. This result is consistent
with the fact that A. oryzae and A. fumigatus are the phylo-
genetically closest species of those evaluated [4,30]. Upon
completion of the similarity searching, the results suggest
that 7,161 genes in A. oryzae could be assigned as orthol-
ogous genes from the three fungi used for comparison. Of
these 7,161 protein sequences, 5,836 sequences were
assigned putative protein functions for A. oryzae. These
functions were mainly obtained from A. fumigatus (Table
1). The remaining 1,325 sequences that have homologs in
the three other fungi could not been assigned any func-
tion yet, and they are therefore classified as hypothetical
proteins. The putative functions annotated here were clas-

Gene discovery and validation of existing genesFigure 1
Gene discovery and validation of existing genes. The bars show the number of new genes discovered and the number of 
existing gene validated by our assembled EST sequences of A. oryzae and EST data of A. flavus [22].
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sified using biological process (BP) type from the Gene
Ontology (GO) database [31]. The genes and functions
that have biological process terms involved in metabo-
lism, including both biosynthesis and catabolism, were
extracted and used for metabolic network reconstruction.
The results of this process show that the A. oryzae genome
contains 1,924 genes (15% of the 13,120 total genes)
encoding 1,070 different protein functions involved in
metabolism.

Metabolic pathway mapping
The metabolic models for S. cerevisiae [13], A. nidulans
[14], and A. niger [15,16] were combined to generate an
initial reaction list for the construction of the A. oryzae
metabolic network. Duplicated reactions were removed
resulting in a list of 1,924 genes and 1,070 functions
involved in metabolism. For each enzyme function
involved in this reaction list it was searched in the above
generated list of metabolic proteins present in A. oryzae. If
an enzyme name matched, then the enzyme-encoding
genes, enzyme functions and Enzyme Commission (EC)
numbers of A. oryzae were selected and mapped onto this
reaction list. Hereafter a classification system was estab-
lished to divide reactions in the whole metabolic network
of A. oryzae into 7 main metabolic pathways: carbohy-
drate metabolism, energy metabolism, amino acid metab-
olism, nucleotide metabolism, lipid metabolism, cofactor
metabolism and secondary metabolism. It is hereby
found that the highest number of enzyme-encoding genes
is involved in carbohydrate metabolism, which is consist-
ent with the fact that A. oryzae has the ability to use a wide

range of carbohydrate substrates. For amino acid and lipid
metabolisms, many enzyme-encoding genes were also
found. A lower number of enzyme-encoding genes were
found in nucleotide, cofactor and energy metabolisms.
The lowest number of enzyme-encoding genes was found
in secondary metabolism. In fact, the A. oryzae genome
contains a lot of enzyme-encoding genes involved in sec-
ondary metabolism [29], but most of these genes are with-
out EC numbers and could therefore not be mapped onto
the metabolic network. The hereby resulting metabolic
network contains several gaps, which means that there are
metabolic reactions without corresponding enzymes.

Filling gaps in the metabolic network using an integrated 
bioinformatics tool
In order to identify genes encoding more enzyme func-
tions and hereby reduce the number of gaps in the meta-
bolic network, an integrated bioinformatics tool was
developed and used to identify these missing enzymes.
This tool called "Gap Filler for Aspergillus oryzae Pathway
(GFAOP)" was developed in- house by combining differ-
ent bioinformatics tools (i.e. BLAST [18], HMMER [19],
and PSI-BLAST [20]) and databases (i.e. A. oryzae genome
[21], Pfam [26], COG [27], and NR [28]). GFAOP is sim-
ilar to the McConkey searching algorithm which has been
used for enzyme identification in eukaryote genomes
[32]. The method is also related to Osterman's method for
the identification of bacterial genes encoding metabolic
functions [33]. An overview of GFAOP is shown in Figure
2. First, the tool was validated by searching for 441 known
protein functions in A. oryzae using the information from

Table 1: Comparison of genome characteristics and function assignments between A. oryzae and other related fungi

Genome characteristics

Features ANI1 AFU2 SC3 AO4

Genome size (Mb) 30.1 29.4 12.1 37.2
Number of chromosomes 8 8 16 8
Number of total predicted genes 10,701 10,267 5,869 13,120

Function assignments

Pairwise comparison ANI and AO AFU andAO SC andAO AO

Number of protein sequence homologs 6,095 6,274 1,794 7,161
Percentage of sequence homologs 85 88 25 100
Number of assigned putative functions 837 5,482 1,731 5,836
Percentage of assigned putative functions 14 93 30 100
Number of predicted genes involved in metabolism 567 1,556 837 1,924
Number of putative functions involved in metabolism 377 1,132 495 1,070

ANI1: Data were obtained from A. nidulans genome database [23]
AFU2: Data were obtained from A. fumigatus genome database [24]
SC3: Data were obtained from S. cerevisiae genome database [25]
AO4: Data were obtained from A. oryzae genome database [21]. Notably, total predicted genes were achieved from both database [21] and our EST 
sequence analysis.
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the genome database [21]. The tool confirmed 100%
accuracy of the prediction. This tool was then used to
search for functional activity related to missing enzyme
(Gap) in the metabolic reaction. To illustrate this
approach, one of the missing enzymes ("D-xylose reduct-
ase" (EC: 1.1.1.21)) in the pathway of xylose degradation
of A. oryzae is selected as an example. To answer the ques-
tion of whether there is a gene encoding D-xylose reduct-
ase in A. oryzae. GFAOP was applied as follows. First the
HMMER program generates a Hidden Markov Model
(HMM) profile of this enzyme (D-xylose reductase) from
the protein families databases (such as Pfam or COG).
Second, a consensus sequence is generated. Third, the

consensus sequence is searched against the A. oryzae
genome by a PSI-BLAST [20]. Sequences where the hit has
suitable statistical significance values are selected and
extracted for protein function assignment by searching
against the NR protein database [28] using BLAST [18] to
verify its probable function.

The result clearly shows that there is a high probability for
that the gene called "AO090003000859" encode D-xylose
reductase. Based on searching of this gene in the A. oryzae
genome database [21], the gene name AO090003000859
is only reported for general prediction and poorly charac-
terized functions. Moreover, the exploration in other data-

Filling gap by integrated bioinformatics approachFigure 2
Filling gap by integrated bioinformatics approach. A diagram of the integrated bioinformatics tools used for filling the 
gaps in the metabolic network. A missing enzyme of D-xylose reductase in xylose degradation pathway is used as an example 
to illustrate the gap filling process.
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bases such as the Genbank, this gene name is only showed
to have a region encoding aldo/keto reductase family pro-
teins, but there is no evidence on the specific function of
the gene. As a result from using GFAOP, the missing
enzyme of D-xylose reductase is entered into the pathway.
Our method results in an improved annotation of the
genome using the context of the metabolic network. An
iterative process was done for filling all the gaps in the
whole metabolic network. Ultimately, 210 gaps in the
metabolic network were closed using GFAOP. These gaps
distributed with 86 gaps in lipid metabolism, 31 gaps in
secondary metabolism, 34 gaps in amino acid metabo-
lism, 23 gaps in nucleotide metabolism, 17 gaps in carbo-
hydrate metabolism, 10 gaps in cofactor metabolism, and
9 gaps in energy metabolism.

Characteristics of the improved annotation and 
reconstructed metabolic network
The annotation process resulted in the improved anno-
tated data shown in Table 2 where the data are compared
with values in the A. oryzae genome database by Machida
et al [21]. The results show that the number of improved
annotated genes is 13,120 which are higher than the
number of genes in the database [21]. Of these improved

annotated data, the predicted genes and the putative func-
tions are distributed into different groups. The first group
contains new putative protein functions assigned to newly
predicted genes, and it contains 398 new putative protein
functions that are divided into 154 metabolic functions
and 244 other functional groups. The second group con-
tains hypothetical proteins assigned to newly predicted
genes and it contains 648 hypothetical proteins. The third
group is new putative protein functions assigned to pro-
teins previously annotated as hypothetical proteins, and
this group comprises 1,469 proteins of which 562 pro-
teins have metabolic functions. The final group contains
genes that is found to have the same putative protein func-
tion as previously reported in the database [21]. In total
the hereby annotated genome of A. oryzae contains 5,391
protein functions of which 3,178 have metabolic func-
tions. Even though the genome still contains 5,214 hypo-
thetical proteins this is less than the 6,683 hypothetical
proteins currently reported in the database [21], and our
work therefore resulted in a substantial improvement of
the genome annotation. An enhanced annotated data
were mapped on the A. oryzae genome by using the Perl
Scalable Vector Graphics (SVG) Module V2.33 [34]. Fig-
ure 3 shows an example of gene and EST mapping on the

Table 2: Statistical characteristics of improved annotation and metabolic reconstruction.

Characteristics of improved annotation Improved annotated data Database

Total protein-encoding genes 13,120 12,074
New putative protein functions to newly predicted genes 398 -

Metabolic functions 154 -
Other functional groups 244 -

Hypothetical proteins to newly predicted genes 648 -
New putative protein functions to previously hypothetical proteins 1,469 -

Metabolic functions 562 -
Other functional groups 907 -

Same putative protein functions 5,391 5,391
Metabolic functions 3,178 3,178
Other functional groups 2,213 2,213

Hypothetical proteins 5,214 6,683

Characteristics of network A. oryzae A. nidulans

Enzymes-encoding genes 1,314 666
Enzymes 729 466
Metabolites 1,073 733
Biochemical reactions 1,846 (1,053 Unique) 1,090 (676 Unique)

Cytosol 832 551
Mtochondria 172 103
Glyoxysome - 5
Peroxisome 19 -
Extracellular 30 17

Transport reactions 281 (161 Unique) 118 (113 Unique)
Reactions with gene assignments 173 (53 Unique) 15 (12 Unique)
Reactions without gene assignments 108 (108 Unique) 103 (101 Unique)

An improved annotated data is compared with genome database of A. oryzae [21]. The reconstructed metabolic network of A. oryzae is compared 
with the reconstructed metabolic network of A. nidulans [14]
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contig of AP007151 which is a part of chromosome 1 of
the A. oryzae genome. The complete genomic map is avail-
able as Additional file 2. The list of all ESTs and genes con-
tained on the genomic map is presented as Additional file
3.

As previously mentioned the improved annotation
resulted in a final reconstructed metabolic network that
contains 729 enzymes, 1,846 (1,053 unique) biochemical
reactions and 1,073 metabolites (Table 2). The large
number of isoenzymes (indicated by the difference
between total biochemical reactions and unique bio-
chemical reactions) points to a very high degree of flexi-
bility in the metabolic network of A. oryzae. The 1,053
unique biochemical reactions are distributed into 832
cytosolic, 172 mitochondrial, 19 perosixomal, and 30
extracellular reactions. There are 281 (161 unique) reac-

tions that function as transport processes, and of these
173 (53 unique) are included on the basis of gene assign-
ments whereas there are no annotated genes for 108 of the
transport reactions. All the genes and functions involved
in metabolism were inspected manually. A total of 1,314
genes without duplication represented as enzyme-encod-
ing genes are included in the reconstructed network. This
corresponded to about 10% of the 13,120 total predicted
genes of A. oryzae. For model comparison, the metabolic
network of A. nidulans [14] was chosen, and it shows that
the metabolism of A. oryzae is much larger than that of A.
nidulans as it contains a higher number of genes,
enzymes, metabolites and reactions (see Table 2). A list of
the reactions in the reconstructed metabolic network that
comprised the genes, EC numbers and enzymes was
hereby obtained (see Additional file 4). To illustrate a
whole network, overall metabolic map of A. oryzae was

Gene and EST mapping on the A. oryzae genomeFigure 3
Gene and EST mapping on the A. oryzae genome. An example of how we map genes and ESTs on the AP007151 contig, 
a part of chromosome 1 of the A. oryzae genome. Along this contig, we mapped EST sequences defining new genes with anno-
tation, EST sequences validating genes, and also re-annotated genes.
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drawn as shown in Figure 4 (also see in Additional file 5
for full size) to represent a valuable link between genes,
enzymes, metabolic reactions and metabolites. The com-
plete metabolite list (with full name) is also given as Addi-
tional file 4.

Biomass growth simulation
Using the reconstructed metabolic network, a stoichio-
metric model was developed and subsequently used to
simulate growth. A list of the reactions that comprise the
stoichiometric model is presented as Additional file 4. To
describe growth, biomass production is regarded as a
drain of macromolecules and building blocks required to
produce cellular components. The demands on each of
these compounds are estimated based on the biomass
composition. No drain of free metabolites or dilution of
the metabolite pool due to biomass growth is considered
[35]. The cellular composition considered for A. oryzae is
based on the contents of the main biomass components
of A. oryzae [36] as shown in Table 3 (see also Additional

file 4 for the original data used to perform this analysis).
In addition, concerning the biomass composition, the
only parameters that have to be estimated are key ener-
getic parameters: ATP requirement for non-growth associ-
ated purposes (mATP), ATP requirement for synthesis of
biomass from macromolecules (KATP) and the operational
P/O ratio. These parameters can not be determined inde-
pendently, but if one of the parameters is known the oth-
ers can be estimated from experimental data. The
operational P/O ratio was assumed to be 1.5 [35], and
mATP (mmol/gDW) was estimated to be 1.9 and KATP
(mmol/gDW) was estimated by fitting model simulation
with experimental data obtained at a specific growth rate
of 0.1 h-1 [36] with glucose as the sole carbon source. The
value of KATP was hereby estimated to be 49 mmoles ATP/
g DW.

Assessment of model validation of A. oryzae
The model was evaluated by simulating A. oryzae cell
growth on different carbon sources and comparison of the

Overall metabolic map of A. oryzaeFigure 4
Overall metabolic map of A. oryzae. A full size of metabolic map of A. oryzae is viewed in Additional file 5.
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simulated data to the experimentally determined growth
rate and biomass yield from literature data [37,38]. For
each carbon source the substrate uptake rate was esti-
mated from measurements of the substrate concentration
in the medium, and this value is used as input to the
model. From this input the flux distributions correspond-
ing to optimal growth are calculated by maximizing the
flux of the reaction leading to biomass. The validation
results are shown in Figure 5 and Figure 6. From the

results, Figure 5 indicates that the model can accurately
predict the maximum specific growth rate (h-1) during
batch cultivations on different carbon sources (when the
uptake rate of the carbon source is given as input). The
accuracy is on average about 98% of the experimentally
determined value. Figure 6 also shows that the model can
accurately predict the biomass yield (gDW/mmol sub-
strate) during chemostat cultivations on different carbon
sources. The small deviation can be explained by kinetic

Table 3: Biomass composition in the metabolic model of A. oryzae

Biomass component Average molecular weight1 [g/mol] Content2 [g/100 g DW] Stoichiometric coefficient4 [mmol/g 
DW]

Normalized3

Proteins 134.58 40 47.1 3.50075
Carbohydrates - 28 33 -

Glycogen 666.6 0.1 0.1 0.00212
Chitin 203.2 7 8.3 0.40759
Glucan 162.1 20.8 24.6 1.51453

RNA 341.9 5.3 6.2 0.18259
DNA 332.3 0.8 0.9 0.02836
Lipids - 6.8 8 -
Triacylglycerol 954.96 2.12 2.49 0.02617
Free fatty acid 301.31 0.35 0.41 0.01365
Phosphatidylethanolamine 782.5 0.97 1.14 0.01468
Phosphatidylcholine 834.8 2.38 2.8 0.03356
Phosphatidylserine 827.3 0.4 0.47 0.00564
Phosphatidylamine 755.24 0.58 0.68 0.00903
D-Mannitol 182.2 3.3 3.9 0.21333
Glycerol 92.1 0.7 0.8 0.08952
Ash - 15.1 - -

1Average molecular weights (units: g/mol of monomers in polymer)
2For growth on glucose, using ammonia as the nitrogen source and for a specific growth rate of 0.1 h-1

3Without considering ash
4In the equation representing biomass formation (units: mmol of monomers in polymer/g DW)

Model validation by experimental dataFigure 5
Model validation by experimental data. Comparison of the maximum specific growth rate (h-1) between simulated data 
and experimental data. The experimental data were obtained from batch fermentation.
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or genetic regulation within the metabolism, which is not
accounted for in the model [17].

Conclusion
A strategy for the improved annotation of the genome
sequence of A. oryzae was developed. Using our assembled
EST library, 1,046 EST sequences (about 12% of 9,038 EST
sequences) were discovered as newly predicted genes and
about 75% (6,773 of 9,038 EST sequences) were used to
validate previously annotated genes. This indicates that
the developed annotation strategy is a very useful
approach for gene prediction. Applying a combination of
various bioinformatics tools and databases, this annota-
tion strategy was successfully applied for function assign-
ment of genes. A high number of newly predicted genes
were assigned with 398 new putative functions, and with
new putative functions to 1,469 proteins previously anno-
tated as hypothetical proteins. Therefore our analysis
results in a substantially reduced number of hypothetical
proteins. In particular, more enzyme-encoding genes
could be assigned functions and this led to filling of 210
missing enzymes in the metabolic network. Applying the
enhanced annotated genome, biochemical pathway data-
bases, other related metabolic models, and the literature,
a metabolic network was reconstructed. The network con-
tains 729 enzymes, 1,314 enzyme-encoding genes (10%
of 13,120 total predicted genes), 1,073 metabolites and
1,846 (1,053 unique) biochemical reactions. The 1,053
unique reactions are distributed into different compart-
ments, with 831 reactions located in the cytosol, 173 reac-
tions located in the mitochondria, 19 reactions located in
the perosixome, and 30 reactions located in the extracel-
lular space. Transport reactions between the different

compartments and the extracellular space represents 281
(161 unique) reactions. This metabolic network was for-
mulated to a stoichiometric model. The model was
applied for Flux Balance Analysis (FBA) to obtain the flux
distributions corresponding to maximized growth. A
physiological study on different carbon sources of A.
oryzae was performed to validate the genome-scale model,
and the model is found to accurately predict the maxi-
mum specific growth rate and the biomass yield on differ-
ent carbon sources. This indicates that the A. oryzae
metabolic model is able to simulate the phenotypic
behavior and the model will hereby serve as an important
resource for gaining further insight into our understand-
ing of the important cell factory A. oryzae.

Methods
An overview of the approach employed here for improved
genome annotation of A. oryzae is depicted in Figure 7. For
gene discovery and validation, we constructed EST library
and performed sequencing as well as assembly as
described in following section.

EST library construction
The EST sequences of A. oryzae strain A1560 were con-
structed from a normalized library and an un-normalized
library. The normalized library was constructed by insert-
ing cDNA of A. oryzae in pCMV-Sport6 plasmids between
the MluI and the NotI sites (Vector – NotI – poly A (3' of
insert) – 5' of insert – MluI – SalI- vector). The plasmids
were amplified in Escherichia coli EMDH10B-TONA (a
recA strain). The un-normalized library was made by
inserting cDNA of A. oryzae between the EcoR1 and NotI

Model validation by literatureFigure 6
Model validation by literature. Comparison of biomass yield (gDW/mmol substrate) obtained by model simulation data 
and data from the literature [37, 38]. The biomass yield was obtained from chemostat fermentation.
Page 10 of 14
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sites in the vector pYES2. The plasmids were amplified in
E. coli DH10B.

EST sequencing and assembly
The EST sequences were generated by sequencing on ABI
377 and ABI 3700 instruments from Applied Biosystems
using BigDye terminators version 1 and 2. In total 23,072
EST sequences were produced. Quality clipping, vector
removal, E. coli contamination removal and assembly
were done with the phredPhrap package [39]. The
sequences were assembled into 9,038 EST contigs.

Genome annotation process
The strategy of gene finding as shown in Figure 7A was car-
ried out based on our assembled EST sequences of A.
oryzae (see Additional file 1, also available online in Gen-
bank database under accession number "EY424375–
433412") together with public EST data of A. flavus [22].
Our assembled EST data of A. oryzae were compared to the
genes previously identified [8] in the genome of A. oryzae
strain RIB 40 by BLASTN [18]. The purpose of this com-
parison was to validate genes that were already annotated

and to discover new genes that had not been annotated by
Machida et al [8]. The 9,038 EST sequences were classified
into four categories as outlined in Additional file 3 and
described as follows. All sequences shorter than 300 bases
were discarded from the analysis. If the length of an EST
sequence was over 500 bps and the highest ranking hit
had a score lower than 50 bits, then the EST sequence was
categorized as a sequence that served as a newly predicted
gene. If the length of the EST sequence was over 300 bps
and the highest ranking hit had a score over 100 bits, then
the EST sequence was categorized as validating an earlier
identified gene [8]. If the highest ranking hit had a score
lower than 100 bits, the EST sequence was classified as
weakly validating a gene [8]. In the effort to predict new
genes in the A. oryzae genome, A. flavus EST data from the
TIGR database [22] was also used. The cut-off for gene dis-
covery and validation was selected to be the identical as
with our assembled EST data of A. oryzae. After performing
gene finding, assignment of protein function was done.
The main principle was performed based on sequence
alignment analysis, metabolic pathway mapping, filling
the gaps by integrated bioinformatics tool and lastly man-

Overview of annotation process of A. oryzae genomeFigure 7
Overview of annotation process of A. oryzae genome. Illustration of the annotation process, which is divided into two 
steps, namely gene finding (Figure 7A) and function assignment (Figure 7B).
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ual curation. The sequence alignment was done to assign
putative function to newly predicted genes by BLASTX
[18]. The newly predicted gene was searched against the
NR protein database [28] and Protall_e protein database
[Unpublished]. The assignment of putative protein func-
tion was transferred if the alignment length of the highest
ranking hit was over 50 amino acids and the identity over
25%. The sequence alignment was done through pairwise
comparison of protein sequences by BLASTP [18] between
A. oryzae and other related fungi (i.e. A. nidulans strain
FGSC-A4, A. fumigatus strain Af293, S. cerevisiae strain
S288c) as shown in Figure 7B. The criteria for similarity
searching were alignment length (bps) and identity (%),
with the parameters depending on the type of fungus used
for the comparison [40]. An estimated suitable cut-off for
S. cerevisiae was an alignment length above 100 bps and
an identity higher than 40%. For other related Aspergillus
species, the cut-off was an alignment length above 200
bps and an identity higher than 40%. All cut-off values
were determined by using sequences with known protein
functions. After finishing the annotation process, the met-
abolic network of A. oryzae was reconstructed. At the
beginning, an initial metabolic reaction list for A. oryzae
was constructed by combination of S. cerevisiae [13], A.
nidulans [14], and A. niger [15,16] metabolic models. In
addition, data collection from metabolic pathway data-
bases, such as KEGG [41] and BioCyc [42], of other organ-
isms was integrated into this reaction list. The improved
annotated genomic data (i.e. enzyme-encoding genes,
enzyme functions, and EC numbers) were then mapped
into the reaction list. In order to visualize all the meta-
bolic reactions, overall metabolic map was drawn (see Fig-
ure 4 and Additional file 5 for full size). The improved
annotated data were placed onto this map. At the end,
gaps that existed in the metabolic network were then filled
using an integrated bioinformatics tool that allowed for
automatic searching for specific enzyme functions.
Finally, manual curation of the model was done for final-
izing the reconstruction process.

Metabolic network reconstruction
The metabolic network reconstruction aimed at represent-
ing the whole metabolism of A. oryzae, which consists of
primary catabolism of carbohydrates, biosynthesis of
amino acids, nucleotides, lipids, cofactors and production
of Gibbs free energy required for biosynthesis, as well as
of secondary metabolism. Combination of different types
of information was essential to carry out a solid recon-
struction. Information was collected from the improved
annotated data of A. oryzae, biochemical pathways, publi-
cations on specific enzymes, online protein databases
(e.g. Swiss-Prot database [43]) and also literature. In addi-
tion, there was physiological evidence for the presence of
a reaction or pathway in A. oryzae, e.g. when there was
information of presence of a specific enzyme activity or

presence of a pathway involved in consumption of a given
substrate or formation of a given metabolic product, then
the underlying reaction was added to the model, even if
there was no annotated gene supporting the presence of
the reaction. In the processes of stoichiometry for cofac-
tors as well as the information on reversibility or irrevers-
ibility for each reaction, these were verified and added as
information into the reconstructed network. Different cel-
lular compartments were considered and consequently
biochemical reactions were distributed into four different
compartments: the extracellular space, the cytosol, the
mitochondria, and the peroxisome [44]. Identification of
localization of each biochemical reaction was analyzed
according to enzyme localization, which was performed
by applying protein localization predictors. Herein, pTAR-
GET [45] and CELLO [46] were selected to predict sub-cel-
lular protein localization because they contain databases
of known eukaryotic protein localizations. If there is no
information on localization of a biochemical reaction or
its corresponding enzyme, then by default this reaction
was considered to occur in the cytosol. In addition, the
reconstructed metabolic network included transport steps
between the different intracellular compartments and
between the cell and the environment.

Modeling and simulation based Flux Balance Analysis 
(FBA)
After the metabolic network was reconstructed, this was
transformed into a mathematical framework to perform
Flux Balance Analysis (FBA) [47]. This approach is based
on conservation of mass under steady-state conditions.
This conversion requires stoichiometry of metabolic path-
ways, metabolic demands and a few specific parameters.
An optimal flux distribution can be obtained within the
feasible region by using linear programming [48]. A reac-
tion is selected as an objective function that is to be max-
imized or minimized. For physiologically meaningful
results, the objective functions must be defined as the
ability to produce the required components of cellular
biomass for a specified uptake rate of a selected carbon
source. By maximizing the flux towards biomass forma-
tion, a flux is obtained for each reaction in the metabolic
network.

Model validation of A. oryzae by physiological study on 
different carbon sources
Model validation is an important step in the reconstruc-
tion process. In this study, the model was validated by
simulating the rate of biomass formation on different car-
bon sources in batch experiments. Here the uptake rate of
the carbon source was given as input to the simulations.
Different carbon sources namely glucose (C6), maltose
(C12), glycerol (C3) and xylose (C5), which were selected
as they result in widely different physiological responses
and parameters. The strain used for generating these data
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was A. oryzae wild type strain A1560, which was obtained
from Novozymes A/S, Denmark. Three biological repli-
cates were done for each carbon source. The fermentations
were performed using an in-house fermenter with a work-
ing volume of 1.2 L, and operated at 34°C and pH was
kept constant at 6 by adding 10% of H3PO4 or 10% NH3
solution. The aeration flow rate was set at 1.2 L/min. The
stirrer speed was controlled at 800 rpm for the first 4 hrs
and later increased to 1100 rpm. The dissolved oxygen
tension was initially calibrated at 100%. The concentra-
tions of oxygen and carbon dioxide in the exhaust gas
were measured by a gas analyzer (Magnos 4G for O2, Uras
3G for CO2, Hartmann & Braun, Germany). Biomass dry
weight measurements were done as follows: A sample was
filtered using nitrocellulose filters (pore size 0.45 µm,
Munktell, Sweden), and the filter cake was therefore dried
at 110°C overnight. Hereafter the filter was placed in a
dessicator overnight, and subsequently, weighed. In addi-
tion, the extracellular concentration of sugars, organic
acids, and polyols were measured by using high-perform-
ance liquid-chromatography (HPLC) on an Aminex HPX-
87H, 300 mm*7.8 mm column. The column was kept at
45°C and eluted at 0.6 ml/min with 5 mM H2SO4.
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The full-genome sequencing of the filamentous fungi Aspergillus
nidulans, Aspergillus niger, and Aspergillus oryzae has opened
possibilities for studying the cellular physiology of these fungi on
a systemic level. As a tool to explore this, we are making available
an Affymetrix GeneChip developed for transcriptome analysis of
any of the three above-mentioned aspergilli. Transcriptome anal-
ysis of triplicate batch cultivations of all three aspergilli on glucose
and xylose media was used to validate the performance of the
microarray. Gene comparisons of all three species and cross-
analysis with the expression data identified 23 genes to be a
conserved response across Aspergillus sp., including the xylose
transcriptional activator XlnR. A promoter analysis of the up-
regulated genes in all three species indicates the conserved XlnR-
binding site to be 5�-GGNTAAA-3�. The composition of the con-
served gene-set suggests that xylose acts as a molecule, indicating
the presence of complex carbohydrates such as hemicellulose, and
triggers an array of degrading enzymes. With this case example,
we present a validated tool for transcriptome analysis of three
Aspergillus species and a methodology for conducting cross-spe-
cies evolutionary studies within a genus using comparative
transcriptomics.

Aspergillus nidulans � Aspergillus niger � Aspergillus oryzae � XlnR

The Aspergillus genus of filamentous fungi has a long history
as a work horse in the service of humankind. Aspergillus

oryzae (koji mold) was first used for the preparation of food
stuffs in China almost 2,000 years ago and was used for one of
the first commercial preparations of enzymes in the late 19th
century (1, 2). Since then, Aspergillus niger has also proven to be
a high-yield producer of organic acids and enzymes, and today,
both of these fungi are used as hosts for production of heterol-
ogous proteins (3). Since the 1950s, Aspergillus nidulans has been
used as a model fungus (4) and has advanced the understanding
of eukaryotic cellular physiology and genetics. Advancing our
knowledge of these fungi as individual species and as a group
holds interest for both fundamental biological sciences and
applied biotechnology.

With the publication of the genome sequences of these three
aspergilli (5–8), genome-wide systems biology studies in the
aspergilli have been made a possibility. As a parallel to the Yeast
2.0 GeneChip that allows for transcriptome analysis of both
Saccharomyces cerevisiae and Schizosaccharomyces pombe, we
have designed a chip to facilitate system-wide studies of A.
nidulans, A. niger, and A. oryzae.

Results
Array Design. An Affymetrix GeneChip was designed for genes
from A. nidulans, A. niger, and A. oryzae. The chip has probes for
99.5% of the genes from the three aspergilli. Because of a
selection of unique nonoverlapping probes of similar melting
point, not all genes have the maximum of 11 probes. Details on
the probe distribution can be found in supporting information
(SI) Table 2.

To evaluate the effect of having probes for three species of the

same genus on the same chip, we randomly picked one set of
transcriptome data from each of the three species (see below for
details on the experiments generating these data). For each
experiment, the distribution of gene expression values for all
three species was examined (Fig. 1). Expression values for the
genes specific for the species from which the hybridized cRNA
was isolated are higher than expression values for genes from the
other two aspergilli. This is the case for samples from all three
species. Even though A. niger and A. oryzae are more closely
related to each other than A. nidulans, this lineage is not
reflected in the shape and levels of the distributions. This reflects
that probes not targeting the genes from the species of the
hybridized sample are acting in an unspecific manner, much in
the same way as probes for unexpressed genes from the same
species. Exceptions to this pattern are genes with high expression
values in the nonhybridized species. These are composed of
constitutively highly expressed and conserved genes, specifically
ribosome and histone components. Although this issue influ-
ences the expression levels measured, we do not believe this
affects evaluation of differential expression between two sets of
experiments, because the effect of the probes on the conserved
genes will be the same between experiments.

Protein Comparison. To examine systems regulating transcription
conserved in all three aspergilli, genes having homologues in all
three species were identified by using a blastp-based comparison
(see Materials and Methods). Using this approach, based on
bidirectional best hits with an e-value cutoff of 1e-30, 5,561 ORFs
were found to be conserved in all three species (tridirectional
best hits, SI Table 3). The number of genes with bidirectional,
unidirectional, and no hits are shown in SI Fig. 4. The three sets
of 5,561 conserved genes (1:1:1 homologues) were used for the
further analysis of the transcript data.

Fermentation Results. As a model example of experiments that can
be conducted by using the presented microarray, cultures of A.
nidulans, A. niger, and A. oryzae were prepared in well controlled
bioreactors. All cultivations were batch cultures grown on de-
fined salt medium with glucose or xylose as carbon sources. Each
species had its own specific cultivation medium. For each of the
three species, triplicate cultivations were performed on each
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carbon source. Fig. 2 presents a summary of the six sets of
triplicates. Dispersed filamentous growth was observed through-
out the fermentation for all cultivations.

Transcriptome Analysis. For all three sets of glucose/xylose fer-
mentations, statistical transcriptome analysis was performed.
The significantly regulated genes in all three species were
compared with the list of the 5,561 conserved genes and with
each other (Fig. 3). This resulted in the identification of 23
conserved genes (Table 1) that are differentially regulated in all
three species and 365 genes that are differentially expressed in
only two of the aspergilli (Fig. 1). The 23 genes that are
significant in all three can be seen as a conserved response across
the Aspergillus genus.

A further inspection of the expression values of the 23
common genes revealed that the homologues are regulated in the
same direction, with 22 of the genes being up-regulated on the
xylose medium and only one gene being down-regulated.

The function of the genes in the less-annotated A. nidulans and
A. oryzae was inferred from the well annotated A. niger genome
sequence, based on the conserved sequences and responses
(Table 1). The majority of the 23 common genes are enzymes and
sugar transporters. Specifically, the entire D-xylose degradatory
pathway (see SI Fig. 5 for an overview) was induced in all three
species. A low-affinity glucose transporter (mstC) (9) was down-
regulated, implying that this transporter has a higher affinity for
glucose than xylose in all three species.

Interestingly, the xylanolytic transcriptional activator XlnR,
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previously described only in A. niger (10) and in A. oryzae as
AoXlnR (11), has a homologue in A. nidulans (AN7610) that is
significantly induced on xylose as well. This suggests that XlnR
regulation is present in A. nidulans and functions in a manner
similar to that reported for A. niger and A. oryzae.

cis-Acting Elements. In recognition that one or more conserved
transcriptional regulators might be active in all three species to
produce the conserved response of the 23 genes, statistical
promoter analysis was performed for all three species sets of 22
genes up-regulated on xylose. A 5�-GGNTAAA-3� motif (motif
A) was found to be significant (P � 3.6e-28) and present 102
times in the promoters of 46 of the 3 � 22 genes (Table 1). In
12 of the 22 conserved genes, the motif was present in the
promoter region of all three species. Included in these 12 sets of
genes is the xylose catabolic pathway. For some of the genes
(L-arabitol dehydrogenase and D-xylose reductase), the motif is
found at the same distance from the start codon for all three
homologues (within 5–20 bp) and with a different third base in
each of the species. A preference for a specific third base in any
of the species across promoters could not be observed. This
indicates evolutionary pressure for maintaining the motif but not
the third base. Details on the location and sequence of the motifs
are in SI Table 4.

The 5�-GGCTAAA-3� motif has been reported to be the
binding site for XlnR from A. niger and A. oryzae (10, 11).
However, based on the statistical analysis, we are proposing that
the 5�-GGNTAAA-3� motif is indeed the XlnR motif that is
conserved in A. nidulans, A. niger, and A. oryzae.

A separate analysis of the promoters that did not contain the
XlnR-motif was carried out, but neither statistical analysis nor
manual inspection for syntenic regions revealed any conserved
domains. A similar analysis was performed for the down-
regulated gene, but no significant motif was found.

Known XlnR-Induced Genes. As a further validation of the method
and the quality of the array, we examined the expression of genes
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Fig. 3. Venn diagram of differentially expressed genes. The gray circles
contain the genes that are significantly differentially expressed and conserved
in all three Aspergillus species. The numbers on a white background are not
conserved in all three species, but still differentially expressed in a single
species.

Table 1. Twenty-three differentially expressed genes conserved in A. nidulans, A. niger, and A. oryzae

A. nidulans A. oryzae A. niger A. niger annotation Regulation Motif A Ng O

AN0250 AO090001000069 JGI55668 Sugar transporter Up NdNgO
AN0280 AO090005000767 JGI55419 Glucosyl hydrolase Up
AN0423 AO090003000859 JGI51997 D-xylose reductase (xyrA) Up NdNgO 12
AN0942 AO090005001078 JGI46405 L-arabitol

dehydrogenase
Up NdNgO

AN10124 AO090003000497 JGI213437 �-glycosidase Up Ng
AN10169 AO090038000426 JGI177736 Short-chain

dehydrogenase
Up NdNgO

AN1677 AO090023000688 JGI54541 Short-chain
dehydrogenase

Up

AN2359 AO090005000986 JGI205670 �-xylosidase (xlnD/xylA) Up NdNgO 10, 13 11, 14
AN3184 AO090012000809 JGI55604 Aldose 1-epimerase Up Ng
AN3368 AO090010000208 JGI212893 Glycoside hydrolase Up NdNg
AN3432 AO090020000042 JGI56084 Aldose 1-epimerase Up NdNgO
AN4148 AO090009000275 JGI205766 Sugar transporter Up NgO
AN4590 AO090011000483 JGI180923 Sugar transporter Up NgO
AN5860 AO090026000494 JGI197162 Monosugar-transporter

(mstC)
Down

AN7193 AO090023000264 JGI55928 Aldo/keto reductase Up NdNgO
AN7610 AO090012000267 JGI48811 XlnR Up NgO
AN8138 AO090010000684 JGI212736 �-galactosidase Up Ng
AN8400 AO090020000324 JGI199510 Sugar transporter Up NgO
AN8790 AO090020000603 JGI209771 D-xylulokinase (xkiA) Up NdNgO 15
AN9064 AO090038000631 JGI203198 Xylitol dehydrogenase

(xdhA)
Up NdNgO

AN9173 AO090010000063 JGI194438 Sugar transporter Up NdNgO
AN9286 AO090026000127 JGI56619 �-glucuronidase (aguA) Up NdNgO 13, 16
AN9287 AO090701000345 JGI54859 Lipolytic enzyme Up NdNgO

Genes marked with �Up� are up-regulated on xylose medium. The presence of motif A (5�-GGNTAAA-3�) in the promoter region of the A. nidulans, A. niger,
and A. oryzae genes is marked with Nd, Ng, and O, respectively. Columns �Ng� and �O� give references to studies of XlnR induction in A. niger and A. oryzae.
No references were found for A. nidulans. VanKuyk et al. (15) show that xkiA is induced on D-xylose in A. niger but does not depend on XlnR. The remaining
references describe XlnR induction of the genes on D-xylose.
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known to be induced by XlnR/AoXlnR on D-xylose. Genes found
among the 22 sets of homologues have been marked with a
reference in Table 1. Details for all genes are in SI Table 5. A
multitude of genes are known from A. niger: xylanase B (xlnB/
xynB) (10, 13), arabinoxylan arabinofuranohydrolase (axhA)
(13), acetyl xylan esterase (axeA) (13), ferulic acid esterase A
( faeA) (13, 17), endoglucanase A (eglA) (13), �- and �-galacto-
sidase [lacA (18), and (aglB) (18)], cellobiohydrolase A (cbhA)
(19), D-xylose reductase (xyrA) (12), �-xylosidase (xlnD) (10, 13),
and �-glucuronidase (aguA) (13, 16). Additionally, D-
xylulokinase (xkiA) (15) has been reported to be induced on
xylose but not regulated by XlnR. All were found to be signif-
icantly induced in this study. Endoglucanase B and C (eglB/C)
and cellobiohydrolase B (cbhB) are known to be induced by
XlnR in A. niger but not when grown on D-xylose (13, 19, 20).
These were not found to be significantly induced.

Fewer genes have been reported to be induced by XlnR on
D-xylose in A. oryzae: �-xylosidase (xylA) (11, 14), endoxylanases
F1 (xynF1) (14, 11, 21), G1 (xynG1) (21), and G2 (xynG2) (21).
All were significantly induced in A. oryzae. Endoglucanases A
and B (celA/B) and cellobiohydrolases C and D (celC/D) are
known to be induced by AoXlnR but not when A. oryzae is grown
on D-xylose (21). These genes were not significantly induced.

No genes have been reported to be induced by XlnR in A.
nidulans, but the xylanases X22 (xlnA) (22, 23), X24 (xlnB) (22,
23), and xylanase X34 (xlnC) (24) are known. Xylanases X22 and
X24 are specific for acidic and alkaline medium, respectively,
and only xylanase X24 was found to be induced. It had a P value
of 0.0527 and was thus not included among the significant 81
genes. Xylanase X34 has been tested only for induction on xylan
(24) but was found to be significantly induced on D-xylose.

Interestingly, xylanases are found to be significantly induced in
all three species, but none of them are tridirectional best hits and
are therefore not found in the core response of 22 genes. It thus
seems that each species has a unique set of xylanases.

Discussion
In an application of the presented high-density microarray, we
identify a carbon source-based response conserved in three as-
pergilli. The design of the study involving three different species,
grown on three different defined minimal media, at three different
values of pH, increases the likelihood of the found genes to be the
true conserved ‘‘core’’ response to growth on xylose and not
responses relying on an extra factor in addition to xylose (with the
possible exception of abundant oxygen). We also believe this
approach validates our argument that the xylanolytic transcriptional
activator XlnR is a conserved system, even though it has not
previously been studied in A. nidulans. Backed by the finding that
the 5�-GGNTAAA-3� motif is present and in some cases conserved
as syntenic regions in all three species, we propose that the motif is
indeed a XlnR motif and conserved in A. nidulans, A. niger, and A.
oryzae. As a point of interest, a study of the homologous genes and
their promoter regions in A. fumigatus, a known degrader of dead
organic matter, showed a XlnR homologue to be present
(Afu2g15620) and the presence of the 5�-GGNTAAA-3� motif in
several of the other homologues, including the entire xylose
catabolic pathway (SI Table 6).

Upon further examination of the function of the up-regulated
genes in A. nidulans, A. niger, and A. oryzae, it is interesting that
the induction of L-arabitol dehydrogenase is found as a part of
the core response. Because both the laboratory of Ronald de
Vries (personal communication) and our laboratory have found
minuscule amounts of arabinose in the commercial preparations
of xylose, it might be an artifact. However, a further examination
of the data shows that L-arabinose reductase (ORFs AN1679,
JGI46249, and AO090009000031), the first step in L-arabinose
degradation (see SI Fig. 5) is not significantly induced in any of
the three species. Additionally, the XlnR motif is found in the

promoter of L-arabitol dehydrogenase in all three homologues of
the gene. This implies that this induction is not an artifact and
is indeed triggered by xylose. One hypothesis might be that
L-arabitol dehydrogenase has an affinity for xylitol as well.
Another hypothesis is based on the observation that in nature,
xylose is seldom encountered alone, but is a constituent of
hemicellulose, along with arabinose, galactose, glucuronic acid,
mannose, and other sugars (25, 26). It is thus likely that fungi
have evolved coupled responses. This also poses an explanation
for the conserved induction of the multitude of sugar transport-
ers, glucuronidase, epimerases, �-galactosidase, and an array of
glucoside hydrolases. It thus seems that the conserved xylose
response is tailored to degrade complex carbohydrates such as
hemicellulose, and xylose triggers this.

Another point of interest is that the promoter analysis suggests
xlnR is not autoinducible in A. nidulans. Additionally, promoter
analysis shows three sugar transporters in the core response to
have only the XlnR motif in A. niger and A. oryzae. This might
imply that another less- or non-conserved system is coregulating
the xylose/xylanolytic response in A. nidulans along with XlnR.
Another possibility is that XlnR can bind to variations of the
motif and induces more of the genes than the statistical analysis
indicates. van Peij et al. (13) demonstrate that for A. niger, the last
base of the motif can vary. de Vries et al. (16) describe induction
via a 5�-GGCTAR-3� motif in A. niger. Marui et al. (11) describe
the binding site to be 5�-GGCTA/GA-3� for A. oryzae. It is thus
likely that each species has versions of the motif that are not
statistically significant because of the increased variation, and
these facilitate induction by XlnR.

The low number of differentially expressed genes in A. nidu-
lans might indicate a lower sensitivity. However, manual inspec-
tion of the expression values shows this is because of a higher
level of variation between the replicates of the A. nidulans
cultivations. Other in-house experiments with A. nidulans and
the presented arrays have identified �2,500 significantly regu-
lated genes and �1,000 in a single comparison (data not shown).
Additionally, the validation of the array using statistical analysis
is confirmed by the expression patterns of hemicellulytic genes
known to be induced on D-xylose and/or by XlnR. These are in
perfect accordance with the transcriptional analysis of this study.

With this study, we give access to a validated platform for
analyzing transcription response in three different Aspergillus sp.
This array allows transcriptome analysis of A. oryzae, which was
previously unavailable, and is a publicly available Affymetrix-
based platform for transcriptome studies in any of the three
species. We hope this publication will spur an increase of
transcriptome analysis in the individual fungi, thus adding to our
knowledge base of this interesting genus of fungi. However,
although we acknowledge the multitude of aspects that can be
elucidated by traditional single-organism transcriptome analysis,
we believe the biggest potential of the herein-presented microar-
ray lies in studies of the multispecies type described in this study.
We have demonstrated that data-analysis strategies, such as the
blast-based strategy presented here, can add strength to conclu-
sions and help identify systems and responses that are conserved
across a genus. This possibility of studying the evolutionary
depth of transcriptional regulation adds a new dimension to
comparative transcriptomics.

Methods
Strains. The strains used were A. nidulans A4, A. niger BO-1, and A. oryzae
A1560, obtained from Novozymes.

The A. nidulans stock culture was maintained on Sigma potato-dextrose-
agar (PDA) at 4°C. A. niger was maintained as frozen spore suspensions at
�80°C in 20% glycerol. A. oryzae stock culture was maintained on Cove-N-gly
agar at 4°C.
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Growth Media. A. nidulans batch cultivation medium: 15 g/liter (NH4)2SO4, 3
g/liter KH2PO4, 2 g/liter MgSO4�7H2O, 2 g/liter NaCl, 0.2 g/liter CaCl2, and 1 ml/liter
trace element solution. Trace element solution: 14.3 g/liter ZnSO4�7H2O, 13.8
g/liter FeSO4�7H2O, and 2.5 g/liter CuSO4�5H2O. Carbon sources used were xylose
or glucose monohydrate (20 g/liter). A. niger complex medium: 2 g/liter yeast
extract, 3 g/liter tryptone, 10 g/liter glucose monohydrate, 20 g/liter agar, 0.52
g/liter KCl, 0.52 g/liter MgSO4�7H2O, 1.52 g/liter KH2PO4, and 1 ml/liter of trace
elements solution. Trace element solution: 0.4 g/liter CuSO4�5H2O, 0.04 g/liter
Na2B4O7�10H2O, 0.8 g/liter FeSO4�7H2O, 0.8 g/liter MnSO4�H2O, 0.8 g/liter
Na2MoO4�2H2O, 8 g/liter ZnSO4�7H2O. A. niger batch cultivation medium: mineral
base, 1.0 g/liter MgSO4�7H2O, 1 g/liter NaCl, 0.1 g/liter CaCl2�2H2O, 0.05 ml/liter
antifoam 204 (Sigma), and 1 ml/liter trace element solution. Trace element
solution composition: 7.2 g/liter ZnSO4�7H2O, 0.3 g/liter NiCl2�6H2O, 6.9 g/liter
FeSO4�7H2O, 3.5 g/liter MnCl2�4H2O, and 1.3 g/liter CuSO4�5H2O. Carbon sources
used were xylose or glucose monohydrate (20 g/liter). Nitrogen, sulfur and
phosphate sources were 2.5 g/liter (NH4)2SO4, 0.75 g/liter KH2PO4 (glucose me-
dium), or 7.3 g/liter (NH4)2SO4, 1.5 g/liter KH2PO4 (xylose medium). Concentra-
tions were higher on the xylose medium to avoid nitrogen starvation. A. oryzae
spore propagation medium (Cove-N-gly): 218 g/liter sorbitol, 10 g/liter glycerol
99.5%, 2.02 g/liter KNO4, 25 g/liter agar and 50 ml/liter salt solution. Cove-N-gly
salt solution: 26 g/liter LiCl, 26 g/liter MgSO4�7H2O, 76 g/liter KH2PO4, 50 ml/liter
trace element solution. Cove-N-gly trace element solution: 40 mg/liter
Na2B4O7�10H2O, 400 mg/liter CuSO4�5H2O, 800 mg/liter FePO4�2H2O, 800 mg/liter
MnSO4�H2O, 800 mg/liter NaMoO4�2H2O, 8 g/liter ZnSO4�7H2O. A. oryzae medium
for precultures (G2-GLY): 18 g/liter yeast extract, 24 g/liter glycerol 87%, 1 ml/liter
pluronic PE-6100. A. oryzae batch cultivation medium: 2.4 g/liter MgSO4�7H2O,
3.6 g/liter K2SO4, 1.2 g/liter citric acid monohydrate, 2.4 g/liter KH2PO4, 3 g/liter
(NH4)2HPO4, 1.2 g/liter pluronic acid (PE-6100) and 0.6 ml/liter trace element
solution. Trace element solution: 14.3 g/liter ZnSO4�7H2O, 8.5 g/liter MnSO4�H2O,
13.8 g/liter FeSO4�7H2O, 2.5 g/liter CuSO4�5H2O, 3 g/liter citric acid monohydrate
(as a chelating agent), and 0.5 g/liter NiCl2�6H2O. Carbon sources used were xylose
or glucose monohydrate (15 g/liter).

Preparation of Inoculum. A. nidulans A4 fermenters were inoculated with
spores to a final concentration of 6 � 109 spores per liter. The spores were
cultivated on PDA at 37°C for 4–5 days and harvested by adding 20 ml of
distilled water.

A. niger BO1 fermentations were initiated by spore inoculation to a final
concentration of 2 � 109 spores/liter (glucose cultivations) or 5.7 � 109 spores/
liter (xylose cultivations). The spores were propagated on complex media
plates and incubated for 7–8 days at 30°C before harvest with 10 ml of Tween
80 0.01%.

A. oryzae A1560 fermenters were inoculated with �60 g of broth of A.
oryzae A1560 cultured at 30°C for 24 h on G2-GLY liquid medium in shake
flasks at 250 rpm (7 � g). The precultures were inoculated with 5 ml of spore
solution harvested from mycelium grown on Cove-N-gly agar at 34°C for 3–4
days. Spores were harvested with Tween 80 0.1%.

Batch Cultivations. A. nidulans batch cultivations were performed in 1.5-liter
bioreactors with a working volume of 1.2 liters. The bioreactors were
equipped with two Rushton four-blade disk-turbine impellers rotating at 350
rpm. The pH was kept constant at 5.5 by addition of 2 M NaOH or HCl, and the
temperature was maintained at 30°C. Air was used for sparging the bioreactor
at a constant flow rate of 1 volume of gas per volume of liquid per minute
(vvm).

A. niger batch cultivations on glucose medium were performed in 2-liter
Braun fermentors with a working volume of 1.6 liters, equipped with three
Rushton four-blade disk turbines. The bioreactor was sparged with air, and
the concentrations of oxygen and carbon dioxide in the exhaust gas were
measured in a gas analyzer. The temperature was maintained at 30°C. The pH
was controlled by automatic addition of 2 M NaOH. Agitation and aeration
were controlled throughout the cultivations. For inoculation of the bioreac-
tor, the pH was set to 2.5, stirring rate to 100 rpm, and aeration to 0.1 vvm.
After germination, the stirring rate was increased to 300 rpm and the air flow
to 0.5 vvm. Eleven to 12 h after inoculation, the stirring rate was increased to
600 rpm and the air flow to 1 vvm. When the CO2 in the exhaust gas reached
a value of 0.1%, the stirring rate was set to 1,000 rpm, and the pH was
gradually increased to 4.5.

A. niger batch cultivations on xylose medium were carried out in 5-liter
reactors with a working volume of 4.5 liters. The bioreactors were equipped
with two Rushton four-blade disk turbines, pH and temperature control, and
no baffles. Inlet air was controlled with a mass flowmeter. The temperature
was maintained at 30°C, and the pH was controlled by automatic addition of
2 M NaOH. The pH was initially set to 3.0 to prevent spore aggregation; only
when spores started to germinate was the pH gradually increased to 4.5.

Similarly, the stirring speed was initially set to 200 rpm and the aeration rate
to 0.05 vvm. After germination, these parameters were progressively in-
creased to 600 rpm and 0.89 vvm and kept steady throughout the rest of the
fermentation.

A. oryzae batch cultivations were done in 2-liter fermenters with a working
volume of 1.2 liters. The stirrer speed was kept at 800 rpm during the first 4 h
and then increased to 1,100 rpm. The pH was controlled at 6 by addition of 4
M NaOH and 4 M HCl, and the temperature was maintained at 34°C. The
aeration flow rate was set at 1.2 vvm. Dissolved oxygen tension was initially
calibrated at 100%.

The concentrations of oxygen and carbon dioxide in the exhaust gas were
monitored with a gas analyzer (1311 Fast Response Triple Gas, Innova com-
bined with multiplexer controller for Gas Analysis MUX100, Braun Biotech).

Sampling. Cell dry weight was determined by using nitrocellulose filters (pore
size 0.45 �m, Gelman Sciences). The filters were predried in a microwave oven
at 150 W for 15 min or at 100°C for 24 h, cooled in a desiccator, and
subsequently weighed. A known volume of cell culture was filtered, and the
residue was washed with distilled water or 0.9% NaCl and dried on the filter
for 15 min in a microwave oven at 150 W or at 100°C for 24 h and cooled in a
desiccator. The filter was weighed again, and the cell mass concentration was
calculated. These values were used to calculate maximum specific growth
rates. For gene expression analysis, mycelium was harvested at the mid-late
exponential phase by filtration through sterile Mira-Cloth (Calbiochem). At
this point, A. niger mycelium was washed with a PBS buffer (8 g/liter NaCl, 0.20
g/liter KCl, 1.44 g/liter Na2HPO4, and 0.24 g/liter KH2PO4 in distilled water). The
mycelium was quickly dried by squeezing and subsequently frozen in liquid
nitrogen. Samples were stored at �80°C until RNA extraction.

Quantification of Sugars and Extracellular Metabolites. The concentrations of
sugar in the filtrates were determined by using HPLC on an Aminex HPX-87H
ion-exclusion column (BioRad). The column was eluted at 60°C with 5 mM
H2SO4 at a flow rate of 0.6 ml/min. Metabolites were detected with a
refractive index detector and a UV detector.

Extraction of Total RNA. A. nidulans and A. niger: 40–50 mg of frozen
mycelium was placed in a 2 ml of microcentrifuge tube, precooled in liquid
nitrogen containing three steel balls (two balls with a diameter of 2 mm and
one ball with a diameter of 5 mm). The tubes were then shaken in a Retsch
Mixer Mill, at 5°C for 10 min, until the mycelia were ground to powder. Total
RNA was isolated from the powder using the Qiagen RNeasy Mini Kit, accord-
ing to the protocol for isolation of total RNA from plant and fungi.

A. oryzae. Total RNA was purified by using the Promega RNAgents Total RNA
Isolation system according to the protocol. For purification, �1 g of frozen
mycelium was ground to a fine powder under liquid nitrogen using a ceramic
mortar and pestle.

For all samples, the quality of the total RNA extracted was determined by
using a BioAnalyzer 2100 (Agilent Technologies) and the quantity determined
by using a spectrophotometer (Amersham Pharmacia Biotech, GE Healthcare
Bio-Sciences). Total RNA was stored at �80°C until further processing.

Preparation of Biotin-Labeled cRNA and Microarray Processing. Fifteen micro-
grams of fragmented biotin-labeled cRNA was prepared from 5 �g of total
RNA and hybridized to the 3AspergDTU GeneChip (available from Affymetrix
on request, order no. 520520F) according to the Affymetrix GeneChip Expres-
sion Analysis Technical Manual (30).

cRNA was quantified in a spectrophotometer (as above). cRNA quality was
assessed by using a BioAnalyzer. A GeneChip Fluidics Station FS-400 (fluidics
protocol FS450_001) and a GeneChip Scanner 3000 were used for hybridiza-
tion and scanning.

The scanned probe array images (.DAT files) were converted into .CEL files
by using the GeneChip Operating Software (Affymetrix).

Analysis of Transcriptome Data. Affymetrix CEL-data files were preprocessed
by using the statistical language and environment R (31) version 2.5. The probe
intensities were normalized for background by using the robust multiarray
average method (32) by using only perfect match (PM) probes. Normalization
was performed subsequently by using the quantiles algorithm (33). Gene
expression values were calculated from the PM probes with the medianpolish
summary method (32). All statistical preprocessing methods were used by
invoking them through the affy package (34).

Statistical analysis was applied to determine genes subject to differential
transcriptional regulation. The limma package (35) was used to perform
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moderated Student’s t tests between the two carbon sources for each of the
three species. Empirical Bayesian statistics were used to moderate the stan-
dard errors within each gene and Benjamini–Hochberg’s method (36) to adjust
for multitesting. A cutoff value of adjusted P � 0.05 was set to assess statistical
significance.

Array Design. Initial probe design was done by using the OligoWiz 2.0 software
(27, 28) from the CDS sequences of predicted ORFs from the genome se-
quences of A. nidulans FGSC A4 (5), A. niger ATCC 1015 (6), and A. oryzae RIB40
(8). For each gene, a maximum of 11 nonoverlapping perfect match probes
were calculated by using the OligoWiz standard scoring of cross-hybridiza-
tion, melting temperature, folding, position preference, and low complexity.
A 3� position preference for the probes was included in the computations. The
probes were designed separately for each genome.

Pruning of the probe sequences to comply with Affymetrix recommenda-
tions was done by removing duplicate probe sequences and shortening probes
that were not possible to synthesize in full length.

Also included on the chip were a number of Affymetrix standard controls,
custom controls, an A. oryzae EST collection (courtesy of Novozymes), and
probes for ORFs from the Streptomyces. coelicolor A3 (2, 29) genome.

Comparison of Protein Sequences. The amino acid sequences of the predicted
ORFs from each of the three genomes were compared with those of the two
others by using blastp (37) with an e-value cutoff of 1e-30. For each protein
query sequence that gave one or more positive hits, the best hit was selected
based on score (a unidirectional best hit). Bidirectional best hits were found by
comparing the lists of best hits for two species against each other and selecting
genes where the best hits paired up, thus giving a conservative set of 1:1
homologues for all pairwise comparisons. Tridirectional best hits were found
by comparing the lists of bidirectional hits for all comparisons, and selecting

the genes that had a 1:1:1 relationship in all comparisons between all three
species (see SI Fig. 4).

Detection of Conserved Motifs. Conserved motifs were identified by using R 2.5
(31) with the cosmo package (38). Default settings were used with the fol-
lowing exceptions: a background Markov model was computed by using the
intergenic regions from scaffold 1 of the A. niger ATCC genome sequence.
Intergenic regions containing unknown bases (Ns) were pruned from the
training set leaving 1.7 Mb in 1,214 sequences. The two-component-mixture
model was used to search for conserved motifs. The maximum number of sites
were increased to include all 102 sites. For all query sequences, 1,000 bp
up-stream of the start codon of the gene was used, or, in the case of some A.
niger genes, 1,000 bp upstream of the predicted transcription start. Only 120
bp was available of the AN4590 promoter.

P values were calculated as P(X � n), with X being a Poisson-distributed
stochastic variable with � � 0.418 and n being the number of motifs found
per kilobase. lambda was calculated as the number of the conserved motif
found per kilobase of the intergenic training set.
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ABSTRACT 
 

Maltose utilization and regulation in aspergilli is of great impor-

tance for cellular physiology and industrial fermentation processes. 

In Aspergillus oryzae, maltose utilization requires a functional 

MAL locus, each composed of three genes: MALR encoding a regu-

latory protein, MALT encoding maltose permease and MALS en-

coding maltase. Through a comparative genome and transcriptome 

analysis we show that the MAL regulon system is active in A. 

oryzae while it is not present in Aspergillus niger. In order to util-

ize maltose, A. niger requires a different regulatory system that 

involves the AmyR regulator for glucoamylase (glaA) induction. 

Analysis of reporter metabolites and subnetworks illustrate the 

major route of maltose transport and metabolism in A. oryzae. This 

demonstrates that overall metabolic responses of A. oryzae occur in 

terms of genes, enzymes, and metabolites when altering the carbon 

source. Although the amount of knowledge on maltose transport 

and metabolism is far from being complete in Aspergillus spp., our 

study not only helps to understand the sugar preference in indus-

trial fermentation processes, but also indicates how maltose affects 

gene expression and overall metabolism. 

 

INTRODUCTION 

 

Aspergillus represents a large genus of filamentous fungi, and sev-

eral species have a long history of application as cell factories in 

fermentation and food industries. In China and Japan, A. oryzae is 

used for production of alcoholic beverage, soy bean paste, soy 

sauce and rice vinegar as well as for production of various hydro-

lytic 

enzymes, such as α-amylase (EC: 3.2.1.1) (Baker & Bennett, 

2008). A. niger is largely exploited for the production of extracel-

lular enzymes, such as glucoamylase (EC: 3.2.1.3) (Baker & Ben-

nett, 2008; Magnuson & Lasure, 2004). Maltose utilization and 

regulation in aspergilli is of great value for academic and industrial 

research. Maltose is one of the most effective inducers for enzyme 

production in aspergilli such as α-amylase production by A. oryzae 

(Carlsen et al., 1996; Carlsen & Nielsen, 2001), but also for glu-

coamylase production measured by enzymatic activity in A. niger 

  
 

and Aspergillus nidulans (Kato et al., 2002; Larry et al., 1972). 

However, compared to the yeast Saccharomyces cerevisiae little is 

known about maltose utilization, transport and regulation at the 

molecular level in aspergilli. Regulation of maltose transport and 

metabolism by yeast is well known (Klein et al., 1996; Novak et 

al., 2004). Maltose utilization in S. cerevisiae is under control of 

three general regulatory mechanisms: induction, glucose repression 

and glucose inactivation (Novak et al., 2004). The presence of 

maltose in the environment is necessary for induction of synthesis 

of maltase and maltose transporter. The metabolism and regulation 

of maltose requires the presence of MAL loci, of which there are 

several identified in different strains of S. cerevisiae, but the MAL6 

locus is the most well studied (Klein et al., 1996). The gene struc-

ture of the MAL6 locus is composed of a cluster of three genes: 

MAL61 (MALT) encoding maltose permease, MAL62 (MALS) en-

coding maltase (EC: 3.2.1.20) and MAL63 (MALR), encoding a 

transcriptional activator specifically activating expression of the 

MALT and MALS genes (Needleman et al., 1984). Expression of 

both MALT and MALS is carbon catabolite repressed by glucose 

through the transcription factor Mig1 and coordinately induced by 

maltose (Klein et al., 1996). 

 

In recent years, available genome sequences of filamentous fungi 

such as Aspergillus species has allowed for studying metabolism in 

greater details, e.g. maltose metabolism and transport, as well as 

filling existing gaps at the molecular level. Since the release of ten 

different Aspergillus species genome sequences (Baker, 2006; 

Fedorova et al., 2008; Galagan et al., 2005; Machida et al., 2005; 

Nierman et al., 2006; Payne et al., 2006; Pel et al., 2007; Yu. J. et 

al., 2005), several transcriptome analysis have been conducted 

with some of these sequences (Breakspear & Momany, 2007), and 

recently we developed an Affymetrix GeneChip that allows for 

transcriptome analysis of any of the three aspergilli: A. oryzae, A. 

niger and A. nidulans (Andersen et al., 2008). In this study, we aim 

to identify the MAL gene cluster in different sequenced Aspergillus 

genomes using the gene structure of the MAL6 locus of S. cere-

visiae as a model. We further validate the presence or absence of 

the MAL gene cluster in A. oryzae and A. niger by using our cus-

tom designed Affymetrix GeneChip for transcriptome analysis 

(Andersen et al., 2008). To do this, we performed batch cultiva-

tions of two Aspergillus species (i.e. A. oryzae and A. niger) on 

glucose and maltose as carbon source, and we then performed 

comparative transcriptome analysis to examine expression of puta-

tive MAL gene clusters in A. oryzae and in A. niger. Furthermore, 
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our study allowed for mapping the transcriptional response onto 

the metabolic network of A. oryzae when adjusting metabolism to 

a change of carbon source, from glucose to maltose. 

 
METHODS 
 

Strains 
The strains used were A. oryzae wild type strain A1560 (an ances-

tor of strains used for commercial α-amylase production) and A. 

niger wild type strain BO1 (an ancestor of strains used for com-

mercial glucoamylase production), both obtained from Novozymes 

(Carlsen & Nielsen, 2001; Pedersen et al., 2000). A. oryzae stock 

culture was maintained on Cove-N-Gly agar at 4°C and A. niger 

stock culture was maintained as frozen spore suspensions at -80°C 

in 20% (v/v) glycerol. 

 

Medium and inoculums 
The details of spore propagation medium, pre-culture medium, and 

batch cultivation medium for A. oryzae or A. niger are described in 

Supplementary file 1. For initial fermentation process, A. oryzae 

A1560 fermenters were inoculated with ~60 g of broth of A. oryzae 

A1560 cultured at 30°C for 24 h on pre-culture liquid medium in 

shake flasks at 250 rpm. The pre-culture was inoculated with 5 ml 

of spore solution harvested from mycelium grown on spore propa-

gation medium agar at 34°C for 3–4 days. Spores were harvested 

with Tween 80 0.1% (v/v).  The A. niger fermenters were inocu-

lated with spores (5.7x109 spores l-1) previously propagated on 

spore propagation medium for 8 days at 30 °C. Spores were har-

vested by adding Tween 80 0.01% (v/v).  

 

Batch cultivations 
A. oryzae batch cultivations were done in 2 L bioreactors with a 

working volume of 1.2 L. The stirrer speed was kept at 800 rpm 

during the first 4 h and then increased to 1100 rpm. The pH was 

controlled at 6 by addition of 10% (v/v) of H3PO4 or 10% (v/v) 

NH3 solution, and the temperature was maintained at 34°C. The 

aeration flow rate was set at 1.2 vvm (volume of gas per volume of 

liquid per minute). Dissolved oxygen tension was initially cali-

brated at 100%. The concentrations of oxygen (O2) and carbon 

dioxide (CO2) in the exhaust gas were monitored with a gas ana-

lyzer (Magnos 4G for O2, Uras 3G for CO2, Hartmann & Braun, 

Germany). 

  

A. niger batch cultivations were carried out in 4.5 L bioreactors 

with a working volume of 4 L. The bioreactors were equipped with 

two Rushton four-blade disc turbines, pH and temperature control 

and no baffles. Inlet air was controlled with a mass flow meter. 

The concentrations of oxygen (O2) and carbon dioxide (CO2) in the 

exhaust gas were monitored with a gas analyzer (1311 Fast re-

sponse Triple gas, Innova combined with multiplexer controller for 

Gas Analysis MUX100, B. Braun Biotech International). The tem-

perature was maintained at 30 °C and the pH was controlled by 

automatic addition of 2 N NaOH. The pH was initially set to 3.0 to 

prevent spores aggregation. Once the spores started to germinate 

the pH was increased to 4.5 and kept constant through the cultiva-

tion. The stirring speed was initially set to 200 rpm and the aera-

tion rate was set to 0.05 vvm. After germination, the stirring speed 

was increased to 600 rpm and aeration rate was raised to 0.89 vvm 

and kept steady throughout all the rest of the fermentation.  

 

Sampling 
Cell dry weight was determined by filtration. A known volume of 

cell culture was filtered, and then dried on the filter at 100°C for 24 

h and cooled down in a desiccator. The filter with dried cell mass 

was weighed afterwards. The culture supernatant was obtained 

after centrifugation of original samples and subsequently frozen at 

-20°C for sugars and extracellular metabolites measurements. For 

gene expression analysis, mycelium was harvested at the early-mid 

exponential phase and then cultures were filtered through sterile 

filtration Miracloth (Calbiochem, San Diego, CA, USA). At this 

point, the mycelium was washed with distilled water or 0.9% (w/v) 

NaCl solution. The mycelium was quickly dried by squeezing and 

subsequently frozen in liquid nitrogen. Samples were stored at -

80°C until RNA extraction. 

 

Sugars and extracellular metabolites measurements 
The concentration of sugars and extracellular metabolites were 

measured by HPLC analysis on an Aminex HPX-87H ion-

exclusion column (BioRad, Hercules, CA) with previous filtration 

by 25 mm GD/X syringe filter, 0.45 µm pore size (Whatman, Inc, 

USA). The column was eluted at 45°C for A. oryzae or 60oC for A. 

niger with 5 mM H2SO4 at a flow rate of 0.6 ml min-1 Extracellular 

metabolites were detected with a refractive index detector and an 

UV detector.  

 
Total RNA extraction 
A. oryzae total RNA was extracted by using the Promega RNA-

gents Total RNA Isolation system, according to the protocol for 

purification of total RNA from fungi. For RNA extraction, ~1 g of 

frozen mycelium was ground to a fine powder under liquid nitro-

gen using a ceramic mortar and pestle. Total RNA of A. niger was 

isolated using the Qiagen RNeasy Mini Kit (QIAGEN Nordic, 

Ballerup, Denmark), according to the protocol for isolation of total 

RNA from plant and fungi. For RNA isolation, ~ 100 mg of frozen 

mycelium were placed in a 2 ml tube, pre-cooled in liquid nitro-

gen, containing three RNase-treated steel balls. The tubes were 

then shaken in a Mixer Mill, at 5oC for 10 minutes, until the myce-

lium was ground to powder, and thus ready for extraction of total 

RNA. For all samples, the quality of the total RNA extracted was 

determined by using a BioAnalyzer (2100 BioAnalyzer, Agilent 

Technologies Inc., Santa Clara, CA, USA) and the quantity deter-

mined by using a spectrophotometer (Amersham Pharmacia Bio-

tech, GE Healthcare Bio-Sciences AB, Uppsala, Sweden). Total 

purified RNA was stored at -80°C until further microarray 

processing.  

 

Microarray manufacturing and design 
Affymetrix arrays were used for the analysis of the transcriptome 

of A. oryzae and A. niger (Affymetrix company, Santa Clara, CA, 

USA). The arrays were packaged in an Affymetrix® GeneChip 

cartridge (49 format), and were processed with GeneChip reagents 

in the GeneChip® Instrument System. The design and selection of 

probes for interrogating the ORFs within the genome of A. oryzae 

and A. niger was performed by Andersen and coworkers (Andersen 

et al., 2008). The array contains only perfect match (PM) probes 

which correspond to 25-base oligonucleotides perfect complemen-

tary to the transcript. Of the 13,120 putative genes identified in the 

genome of A. oryzae (Machida et al., 2005; Vongsangnak et al., 

2008), 12,039 probe sets were used for microarray analysis. Of the 

11,200 putative genes identified in the genome of A. niger, 11,122 

probe sets were used for microarray analysis. Each of the probe 
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sets were composed of 11 probes (whenever possible) of 25 oligo-

mers (Andersen et al., 2008).   

Biotin-labeled cRNA and microarray processing 

Biotin-labeled cRNA was prepared from ~ 5 µg of total RNA, 

according to the protocol described in the Affymetrix GeneChip 

Expression Analysis Technical Manual (Affymetrix & GeneChip, 

2007). The cRNA was cleaned before fragmentation by using the 

Qiagen RNeasy Mini Kit (protocol for RNA Cleanup), in order to 

guarantee the quality of cRNA samples for further processing. 

Biotin-labeled cRNA was quantified in a spectrophotometer (Am-

ersham Pharmacia Biotech, GE Healthcare Bio-Sciences AB, Upp-

sala, Sweden). Then, 20 µg of cRNA were fragmented following 

manufacturer protocol and ~ 15 µg of fragmented cRNA was hy-

bridized to the Aspergillus Affymetrix chip (Andersen et al., 2008) 

according to the Affymetrix GeneChip Expression Analysis pro-

tocol (Affymetrix & GeneChip, 2007). Arrays were washed and 

stained using a GeneChip Fluidics Station FS-400, and scanned 

on an Agilent GeneArray Scanner.  

 

Microarray data acquisition and analysis 
Affymetrix CEL-data files were preprocessed using bioconductor 

(Gentleman et al., 2004) and R package version 2.5.1 (R Devel-

opment Core Team). Normalization was performed by using the 

qspline algorithm (Workman et al., 2002). Normalized gene ex-

pression data set is presented in Supplementary file 2. The probe 

intensities were corrected for background by using the robust mul-

tiarray average method (Irizarry et al., 2003) by using all the 

probes. Gene expression values were calculated from the probes 

associated with each gene with the medianpolish summary method 

(Irizarry et al., 2003). All statistical preprocessing methods were 

invoked through the affy package (Gautier et al., 2004) and R 

scripts (Dudoit et al., 2003). Statistical analysis was applied to 

determine significantly different gene expressions. The limma 

package (Smyth et al., 2005) was used to perform moderated Stu-

dent’s t tests for pairwise carbon source comparisons. Empirical 

Bayesian statistics were used to moderate the standard errors with-

in each gene and Benjamini-Hochberg’s method to adjust for mul-

titesting (Benjamini & Hochberg, 1995). A cut-off value of ad-

justed P<0.05 was set to assess statistical significance. 

 

Identification of MAL gene cluster based on protein se-

quence analysis 
A cluster of three genes from the S. cerevisiae MAL6 locus was 

used as a scaffold model to identify the MAL gene cluster in 10 

Aspergillus genome sequences. The three genes used were MAL61, 

MAL62, and MAL63 from S. cerevisiae which amino acid se-

quences were extracted from GenBank database 

(http://www.ncbi.nlm.nih.gov/) with accession numbers P15685.1, 

P07265.1, and P10508.1. The complete set of three amino acid 

sequences of S. cerevisiae was further used as query and searched 

against the amino acid sequences of 10 different sequenced Asper-

gillus genomes by using BLASTP (Altschul et al., 1990). The 

sequenced species included were: A. oryzae RIB40 (Machida et al., 

2005), A. niger CBS 513.88 (Pel et al., 2007), A. niger ATCC 

1015 (version 3) (http://genome.jgi-

psf.org/Aspni5/Aspni5.home.html), A. nidulans FGSC A4 (version 

4) (Galagan et al., 2005; Wortman et al., 2009), Aspergillus fumi-

gatus Af293 (Nierman et al., 2006), Aspergillus fumigatus A1163 

(Fedorova et al., 2008), Aspergillus flavus NRRL 3357 (Payne et 

al., 2006), Aspergillus terreus NIH2624 

(www.broad.mit.edu/annotation/fungi/aspergillus_terreus), Asper-

gillus clavatus NRRL 1 (Fedorova et al., 2008) and Aspergillus 

fischeri NRRL 181 (Fedorova et al., 2008). An estimated expecta-

tion value cut-off of less than 1E-100, more than 40% identity, and 

more than 500 bps of alignment length was set to assess statistical 

significance for identification of any orthologues. For identifica-

tion of MAL gene cluster based on synteny analysis, the expecta-

tion value cut-off of less than 1E-05, more than 20% identity, and 
more than 200 bps of alignment length was set to assess 

statistical significance.   
 

Reporter metabolites and subnetwork analysis 
The reporter metabolites and highly correlated metabolic sub-

network algorithm was applied as described by Patil and Nielsen 

(Patil & Nielsen, 2005). The analysis was run for A. oryzae, for the 

glucose versus maltose carbon source pairwise comparison. For 

this purpose, information on the topology of the reconstructed 

metabolic network of A. oryzae (Vongsangnak et al., 2008) was 

used in combination with the adjusted p-values obtained from the 

Student’s t-test analysis. 

 

RESULTS 

 

Comparative analysis between MAL gene cluster in S. 

cerevisiae and Aspergillus species  
First we searched for the presence of the MAL gene cluster in 10 

different sequenced Aspergillus genomes. For this purpose, the 

gene structure of the MAL6 locus of S. cerevisiae was used as a 

model and BLASTP was applied (See METHODS). The results 

showed that six different Aspergillus strains (i.e. A. oryzae, two 

strains of A. fumigatus, A. flavus, A. clavatus, and A. fischeri) con-

tain at least one MAL gene cluster as illustrated in Fig. 1. Interest-

ingly, A. oryzae and A. flavus contain at least two MAL gene clus-

ters. Phylogenetic analysis suggests that events of gene duplication 

and horizontal gene transfer may have occurred (See Supplemen-

tary file 3). In contrast, we could not find any MAL cluster in A. 

nidulans, A. terreus and two strains of A. niger under the statistical 

constraints imposed. These results could suggest that these four 

Aspergillus strains most likely do not have the MAL regulon for 

maltose utilization. Notably, in all the sequenced Aspergillus ge-

nomes, we could identify multiple orthologue genes encoding mal-

tase or α-glucosidase enzymes and maltose transporters as shown 

in Fig. 1. Statistical values of orthologous genes are presented in  

Supplementary file 3. 

 

To prove the presence or absence of the MAL gene cluster at the 

transcriptional level, we further evaluated our results obtained 

from comparative genomics through transcriptomics analysis. In 

the following, we show an example of using our previously de-

signed Aspergillus GeneChip (Andersen et al., 2008) to validate 

the presence of MAL gene cluster in the A. oryzae genome and the 

absence of MAL gene cluster in the A. niger genome. 

 

Growth physiology 
To evaluate the physiology and validate the presence or absence of 

the MAL gene cluster as well as to analyze the regulatory response 

when adjusting metabolism to a change of carbon source, i.e. from 

glucose to maltose, we grew the two Aspergillus species in well-

controlled bioreactors to perform reproducible fermentations. 
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MalR MalS MalT

MAL gene cluster Orthologs

Aspergillus

species Cluster 1 Cluster 2 Cluster 3 No cluster

A. oryzae

RIB40

A. niger

CBS 513.88

A. niger

ATCC1015

A. nidulans

FGSC A4

A. fumigatus

Af293

A. fumigatus

A1163

A. flavus

NRRL 3357

A. terreus

NIH2624

A. clavatus

NRRL 1

A. fischeri

NRRL 181

Fig. 1. - Diagram shows comparative sequence analysis of MAL gene cluster between S. cerevisiae and 10 different Aspergillus species. 

Values in each rectangle represent a shortened ORF name. For individual full name, the shorten ORF is prefixed by “AO090” for A. oryzae 

RIB40, “An02g” for A. niger CBS 513.88, “JGI” for A. niger ATCC 1015, “ANID_” for A. nidulans FGSC A4, “ORF” for A. fumigatus 

Af293 and A1163, A. clavatus NRRL 1 as well as A. fischeri NRRL 181, “AFL2T_” for A. flavus NRRL 3357, “ATET_” for A. terreus 

NIH2624. 

 
All batch cultivations of A. oryzae and A. niger were carried out on 

a defined, minimal medium with glucose or maltose as the sole 

carbon source. Each species had its own specific cultivation me-

dium optimized for growth of those species (Andersen et al., 2008; 

Pedersen et al., 2000) (See METHODS section for details). For 

each of the two species, three biological replicate cultivations were 

performed on each carbon source. The results are shown in Fig. 2. 

Panel A shows the biomass growth and substrate concentration 

profiles of A. oryzae and A. niger. For both species, these two car-

bon sources were completely consumed. In comparison to A. niger, 

A. oryzae grew faster than A. niger in the two carbon sources used 

and they were completely consumed at different rates. Glucose was  

exhausted in 10 h and maltose in 12 h, at rates of 3.09±0.02 g l-1.h-1 

and 2.46±0.02 g l-1.h-1, respectively. The maximum specific growth 

rate of A. oryzae on glucose was 0.38±0.01 h-1, which is due to the 

high efficiency in the uptake and metabolism of this sugar. Slightly 

slower growth was achieved on maltose, where the maximum spe-

cific growth rate was 0.32±0.05 h-1. As shown in Fig. 2, almost no 

accumulation of glucose was seen in the media during growth on 

maltose. With A. niger, glucose was exhausted in 32 h, and mal-

tose was consumed after 19 h. As indicated in Fig. 2, A. niger 

growth on maltose was faster than on glucose, where a maximum 

specific growth rate of 0.22±0.01 h-1 was achieved. In the case of 

maltose consumption, there was an accumulation of glucose due to 

a very high extracellular glucosidase activity expressed by A. nig-

er, which allowed the fungus to grow very fast on this carbon 

source at a maximum specific growth rate of 0.31±0.02 h-1. Be-

sides growth rates and biomass yields of A. oryzae and A. niger, 

transcriptional analysis (TA) sampling times and biomass yields at 

the specific TA sampling time were recorded for the two microor-

ganisms on the two carbon sources (See Fig. 2, panel B). 

 

 

Comparative transcriptome analysis 
To further test our assumption obtained from comparative genom-

ics for MAL regulon existing in A. oryzae or not present in A. nig-

er, the genome-wide gene expression data obtained from glucose 

or maltose cultivations were pairwise compared for each species. 

To detect transcriptional changes in response to a change in the 

carbon source, Student’s t-test statistics were used to identify sig-

nificantly different gene expression levels with a p-value cut-off of 

0.05. This cut-off p-value was adjusted by the Benjamini-

Hochberg method (Benjamini & Hochberg, 1995) for correction of 

multiple testing. Table 1 shows a list of genes that were signifi-

cantly differentially expressed in A. oryzae between glucose and 

maltose (16 gene expression changes). In contrast, for A. niger, no 

genes were statistically differentially expressed when using glu-

cose or maltose as carbon source. 

 

Analysis of the MAL regulon 

As shown in Table 1, 16 genes showed higher expression level on 

maltose compared to glucose in A. oryzae. It is suggested that these 

genes are induced during metabolism of maltose. Among these 

genes, 10 protein-encoding genes were functionally annotated and 

involved in polysaccharide and disaccharide metabolism, such as 

glucoamylase, maltose permease, maltase, sugar transporters and 

maltose-O-acetyltransferase (EC: 2.3.1.79 which acetylates oligo-

saccharides). In the yeast S. cerevisiae, regulation of maltose utili-

zation occurs by the MAL regulon (Chow et al., 1989) via the tran-

scription activator (MALR), which induces maltose permease 

(MALT) and maltase (MALS) gene expression.  
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Fig. 2. - Biomass and substrate concentration profiles with the 

different carbon sources (glucose and maltose)  

(A) Batch cultivation with A. oryzae and A. niger (B) Physiological 

data for all cultivations, maximum specific growth rate, biomass 

yield, sampling time for transcriptional analysis (TA), and biomass 

concentration at the time of sampling for transcriptional analysis 

(TA) are given. Average values and standard deviations are calcu-

lated from three biological replicates. *Biomass yield was calcu-

lated based on glucose (g DW/g glucose)  

 
Moreover, we also found up-regulated genes encoding maltose 

permease, AO090103000130 and AO090038000233, which are the 

functionally related orthologous genes of MALT in S. cerevisiae 

(See Fig. 1). The two A. oryzae genes orthologous to the S. cerevi-

siae MALR transcription factor, AO090103000131 and 

AO090038000235, were also up-regulated, but not statistically 

significant. This suggests that the mechanism behind the MAL 

regulon in A. oryzae is similar to MALR function in S. cerevisiae, 

where it is activated by maltose and repressed by glucose. Based 

on Regulatory Sequence Analysis Tools (RSAT) (Thomas-Chollier 

et al., 2008) for identification of transcription factor binding site in 

upstream region of MALR in A. oryzae, we could putatively iden-

tify CreA binding site 5’-GCGGGG-3’ (Cubero & Scazzocchio, 

1994; Drysdale et al., 1993) in upstream sequences where this site 

was found at base position 64 with respect to the start codon of 

AO090038000235. This result suggests that the presence of glu-

cose represses MALR expression and the formation of active con-

formation of MALR protein as it occurs in S. cerevisiae (Klein et 

al., 1996).  According to the results of protein sequence analysis 

and synteny gene analysis (Sinha & Meller, 2007) of the MAL gene 

cluster, we could conclude that A. oryzae has two MAL regulons 

and each regulon contains two genes (i.e. AO090103000131 and 

AO090038000235) that are likely to be MALR transcriptional acti-

vators (See Fig. 1). From this significant evidence combined with 

the physiological response of A. oryzae growth on maltose (See 

Fig. 2), where A. oryzae continuously consumed maltose having 

almost no accumulated glucose over time, we propose that A. ory-

zae has systematic regulation of maltose utilization by these two 

MAL regulons, where MALR transcription factor induces maltose 

permeases (MALT) to transport extracellular maltose into the cell 

and MALR also induces maltase (MALS) that hydrolyzes intracellu-

lar maltose into glucose which is then channeled through glycoly-

sis. Fig. 3 illustrates the proposed mechanisms for regulation of 

maltose utilization in A. oryzae (Panel A).  

 

 

MLT

GLC

G6P

Central carbon metabolism

MLT

(A)

Maltose permease 

Maltase

Other enzymes

MALT

MALR

MALS

 
 

 

MLT

G6P

F6P

Central carbon metabolism

GLC

(B)

Hexose transporter

Glucoamylase

Other enzymes

GLC

AmyR glaA

 
 

 

Fig. 3. - Diagram shows comparative maltose utilization and regu-

lation in A. oryzae (A) and in A. niger (B) 
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         Table 1 Pairwise carbon source comparison for gene expression analysis in A. oryzae under the cut-off p-value<0.05 

Gene name Protein function Fold change Up/Down 
Adjust P-

value 

AO090103000130 Maltose permease 30.9 Up 2.99E-06 

AO090103000129 Maltase 304.4 Up 2.03E-05 

AO090701000246 Hypothetical protein 9.4 Up 1.87E-04 

AO090038000233 Maltose permease 61.4 Up 2.82E-04 

AO090038000234 Maltase 213.8 Up 2.82E-04 

AO090012000888 Maltose-O-acetyltransferase 12.6 Up 1.24E-03 

AO090003000576 Hypothetical protein 6.7 Up 5.83E-03 

AO090003000321 Glucoamylase 9.3 Up 7.32E-03 

AO090003000256 Hypothetical protein 3.1 Up 7.32E-03 

AO090038000471 Maltase 11.7 Up 2.92E-02 

AO090012000893 Hypothetical protein 2.0 Up 3.46E-02 

AO090011000612 NAD binding Rossmann fold oxidoreductase 1.9 Up 3.46E-02 

AO090023000245 Glucose transporter 9.1 Up 3.71E-02 

AO090026000775 Monosaccharide transporter 4.2 Up 3.72E-02 

AO090010000746 Glucoamylase 2.5 Up 3.90E-02 

AO090012000896 Hypothetical protein 2.0 Up 4.39E-02 

 

 

In contrast, we could not identify any MAL gene cluster in A. niger 

that is closely homologous to the one existing in S. cerevisiae (See 

Fig. 1). Furthermore, transcription data analysis of the pairwise 

comparison between maltose and glucose in A. niger, did not show 

any significant gene expression changes that can point out the 

presence of MAL cluster either. We therefore propose that maltose 

utilization in A. niger most likely do not involve a MAL regulon, 

but occurs through another regulatory system via AmyR regulator 

and the recent publication of genome-wide expression analysis in 

A. niger by Yuan and coworkers (Yuan et al., 2008) supports these 

results. Fig. 3 illustrates the proposed mechanisms for regulation of 

maltose utilization in A. niger (Panel B).  

 

Key metabolite identification and metabolic subnet-

works analysis 

In order to analyze the overall metabolic responses to changes in 

the carbon source, i.e. using glucose or maltose, we applied the 

reporter metabolites and subnetworks algorithm to identify key 

metabolites and to search for highly correlated metabolic sub-

networks for the pairwise comparison (Patil & Nielsen, 2005). This 

analysis relied on the reconstructed genome-scale metabolic net-

work of A. oryzae (Vongsangnak et al., 2008), and therefore we 

demonstrated how these metabolic networks can be used to map 

regulatory responses in this Aspergillus spp. The top 15 high-

scoring key metabolites for A. oryzae are listed in Table 2. To 

identify high-scoring metabolic subnetworks, we performed sub-

network analysis using the whole reaction set from the recon-

structed metabolic network of A. oryzae.  Fig. 4 shows the list of 

key genes-encoding enzymes and transporters comprising the sub-

network of A. oryzae investigated upon a change of carbon source, 

from glucose to maltose.  

 

 

 
Table 2 List of significant key metabolites from the pair- 

wise carbon source comparison in A. oryzae (p-value cut- 

off < 0.01) 

Maltose Versus Glucose

Key metabolite P-value

Maltose 0.00E+00

Maltose (Extracellular) 0.00E+00

Maltotriose 3.04E-14

Glucose 1.18E-11

Glucose (Extracellular) 1.44E-09

Glycogen (Extracellular) 2.50E-06

Starch (Extracellular) 2.50E-06

D-fructose (Extracellular) 3.73E-05

2-keto-myo-inositol 4.22E-05

D-galactose 7.41E-05

D-aspartate 1.16E-04

D-arabinono-1,4-lactone 1.60E-04

H2O (Extracellular) 4.88E-04

D-Mannose (Extracellular) 5.85E-04

Alpha, alpha-trehalose 

(Extracellular)
9.11E-04
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Fig. 4. - Small metabolic subnetwork from pairwise carbon source comparison in A. oryzae 

Key metabolites, key enzymes and transporters in the small subnetwork identified for a change of carbon source, from glucose to maltose. 

Gene names marked red are up-regulated upon the change and numerical numbers in parenthesis marked red are log2 fold-change value 

upon the change of carbon source. The abbreviations of metabolites are described as follows: GLC, glucose; MLT, maltose; MLTIOSE, 

maltotriose; STAR, starch; GLYCOGEN, glycogen; H2O, water. Extracellular metabolites are designated by subscript ‘e’. 

 

DISCUSSION 

Maltose is of economical relevance due to the fact that it is one of 

the products of starch hydrolysis and it is used as an inducer for 

protein production in Aspergillus species. In this work, we con-

ducted comparative genomics and transcriptomics in A. oryzae or 

A. niger in order to investigate maltose uptake, metabolism and 

regulation. In S. cerevisiae, maltose utilization and regulation oc-

curs through the use of the MAL regulon. It is composed of three 

genes, one maltase, one maltose transmembrane transporter, as 

well as a third gene that encodes a positive regulator, MALR (No-

vak et al., 2004). Interestingly, some bacteria such as Lactococcus 

lactis (Andersson & Rådström, 2002) and Streptomyces coelicolor 

(van Wezel et al., 1997) also make use of the MAL regulatory sys-

tem involving the MALR transcriptional activator of their corres-

ponding operons for maltose utilization. Through comparative 

genomics analysis we were able to significantly identify two MAL 

clusters in A. oryzae, but no MAL cluster in A. niger. Besides, we 

also found one MAL cluster in A. clavatus, A. fumigatus and A. 

fischeri as well as three MAL clusters in A. flavus. 

 

We further confirmed the presence of MAL clusters in A. oryzae at 

the transcriptional level. The results from genome-wide expression 

analysis identified a subset of 16 genes to be significantly up-

regulated during growth on maltose. Among them, we found 

MALS encoding maltase and MALT encoding maltose permease. In 

addition, according to gene expression data, we also found higher 

expression level of MALR encoding a transcriptional activator in 

maltose utilization, but the expression changes were not statistical-

ly significant. Based on our integrated data analysis, we could 

conclude that A. oryzae can utilize maltose via the MAL regulon 

system. 

 

We further investigated the transcriptional responses to change in 

the carbon source in batch cultivations, when using glucose or 

maltose through the use of reporter metabolites and subnetwork 

analysis (Patil & Nielsen, 2005) together with the  reconstructed 

metabolic network of A. oryzae (Vongsangnak et al., 2008). The 

transcriptional responses were in general consistent with the 

changes expected at the phenotypic level, which indicate that the 

regulation at the transcriptional level plays a significant role in the 

overall regulation during growth on these two carbon sources. 

In comparison to A. oryzae, comparative genome analysis showed 

that A. niger does not have any MAL cluster. We further evaluated 

expression level of the MAL gene cluster by transcriptome analy-

sis. The results showed absence of a MAL gene cluster in A. niger. 

Our results are consistent with previous transcriptome studies in A. 

niger using the wild type strain N402 (ATCC 9029) (Yuan et al., 

2008) that did not identify up-regulation of components of the 
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MAL regulon when comparing gene expression data on xylose 

versus maltose cultivations. 
 

Moreover, we did not find any significant genes in A. niger when 

comparing maltose to glucose, although A. niger glaA is proposed 

to be strongly induced on maltose, as described earlier by (Fowler 

et al., 1990). In order to utilize maltose, we propose that A. niger 

makes use of another regulatory system via AmyR regulator. Yuan 

et al. (Yuan et al., 2008) suggested that AmyR is an important 

transcription factor that is found in A. niger and that amyR itself is 

induced by the presence of maltose. In addition, their studies indi-

cated that amyR gene transcription regulation takes place in A. 

niger and showed that a disruption of the AmyR transcription fac-

tor resulted in low levels of extracellular enzymes i.e. acid α-

amylase (AamA), α-glucosidases (AgdA and a putative AgdB) and 

glucoamylase (GlaA) converting maltose to glucose and conse-

quently activating a stress response due to low glucose levels. The 

low availability of glucose transferred a signal to down-regulate 

glucose transporters (Yuan et al., 2008). This is in accordance with 

our transcriptome results and the physiological response obtained 

in A. niger maltose cultivations (See Fig. 2), where maltose clea-

vage occurred faster than glucose uptake and metabolism leading 

to a high extracellular accumulation of glucose over time. We 

therefore support the conclusions from previous studies where it is 

stated that A. niger has regulation of maltose utilization by the 

AmyR transcriptional activator. It activates genes encoding known 

extracellular starch degrading enzymes, such as aamA, glaA, agdA 

and a putative α-glucosidase agdB encoding gene. The glaA gene 

product, an extracellular glucoamylase, can convert extracellular 

maltose to extracellular glucose and then glucose can be taken up 

by glucose transporters.  

Interestingly, maltose has been found to be better than glucose for 

glucoamylase production, but it has been reported as well that it is 

a strain dependent phenomenon, where for some strains there is no 

difference between the use of any of the two carbon sources, glu-

cose or maltose (Schrickx et al., 1993). Furthermore, studies of 

glaA regulation in the A. niger strain ATCC 10864 showed starch, 

maltose and glucose as positive inducers of glucoamylase produc-

tion (Fowler et al., 1990). In contrast, previous studies with the A. 

niger BO1 strain used in this study have reported no difference 

between maltose and glucose as carbon source with respect to glu-

coamylase productivity as well as identical mRNA levels for 

growth on maltose or glucose in chemostat cultivations (Pedersen 

et al., 2000). Based on findings in the literature (Yuan et al., 2008) 

and our findings, we suggest that A. niger utilize maltose by means 

of extracellular hydrolysis by glucoside hydrolases such as glu-

coamylase followed by glucose uptake and metabolism.  

 
From comparative genome and transcriptome analysis, we showed 

that maltose utilization and regulation of A. oryzae is very similar 

to that found in the yeast S. cerevisiae with sugar degradation 

pathways where a number of enzymes and proteins are involved. 

Our analysis can help to understand how maltose is utilized and 

regulated in Aspergillus species and to convey improvements in 

industrial practice for protein production in the future.      
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Supplementary file 1 

File format: DOC 

Description: This file provides the details of medium compositions 

for A. oryzae and A. niger. 

 

Supplementary file 2 
File format: XLS 

Description: This file provides the normalized intensities of mal-

tose and glucose conditions considering all the categories of the 

three biological replicated experiments in A. oryzae (Table S1) and 

A. niger (Table S2).  

 

Supplementary file 3 

File format: PDF 

Description: This file provides Supplementary figure (Fig. S1) and 

table (Table S1) for statistical details of comparative sequence 

analysis of MAL gene cluster between S. cerevisiae and 10 differ-

ent Aspergillus species. Statistical values are presented: E-value, % 

identity and alignment length.  Besides, this file also provides Sup-

plementary figures (Fig. S2-Fig. S5). It shows phylogenetic tree for 

MAL gene cluster. 

 

REFERENCES 

 

Affymetrix & GeneChip (2007). Affymetrix Genechip Expres-

sion Analysis Technical Manual. P/N 702232, Affymetrix, Santa 

Clara, CA, Revision 2. 

 

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, 
D. J. (1990). Basic Local Alignment Search Tool. J Mol Biol 215, 

403-410. 

 

Andersen, M. R., Vongsangnak, W., Panagiotou, G., Margari-
ta, P. S., Lehmann, L. & Nielsen, J. (2008). A tri-species Asper-

gillus microarray - advancing comparative transcriptomics. Proc 

Nat Acad Sci USA 105, 4387-4392. 

 

Andersson, U. & Rådström, P. (2002). Physiological function of 

the maltose operon regulator, MalR, in Lactococcus lactis. BMC 

Microbiol 2: 28. 



Genome-wide analysis of maltose utilization and regulation in aspergilli 

9 

 

Baker, S. E. (2006). Aspergillus niger genomics: Past, present and 

into the future. Med Mycol 44, S17-S21. 

 

Baker, S. E. & Bennett, J. (2008). An Overview of the Genus 

Aspergillus. The Aspergilli: Genomics, Medical Aspects, Biotech-

nology, and Research Methods, eds Osmani SA, Goldman GH, 

CRC Press, Boca Raton, FL, pp. 3-13. 

 

Benjamini, Y. & Hochberg, Y. (1995). Controlling the False 

Discovery Rate - a Practical and Powerful Approach to Multiple 

Testing. J R Stat Soc Ser B-Methodol 57, 289-300. 

 

Breakspear, A. & Momany, M. (2007). The first fifty microarray 

studies in filamentous fungi. Microbiology-Sgm 153, 7-15. 

 

Carlsen, M., Nielsen, J. & Villadsen, J. (1996). Growth and al-

pha-amylase production by Aspergillus oryzae during continuous 

cultivations. Journal of Biotechnology 45, 81-93. 

 

Carlsen, M. & Nielsen, J. (2001). Influence of carbon source on 

alpha-amylase production by Aspergillus oryzae. Appl Microbiol 

Biotechnol 57, 346-349. 

 

Chow, T. H. C., Sollitti, P. & Marmur, J. (1989). Structure of 

the Multigene Family of Mal Loci in Saccharomyces. Mol Gen 

Genet 217, 60-69. 

 

Cubero, B. & Scazzocchio, C. (1994). Two different, adjacent 

and divergent zinc finger binding sites are necessary for CreA 

mediated carbon catabolite repression in the proline gene cluster of 

Aspergillus nidulans. Embo Journal 13, 407-415. 

 

Drysdale, M. R., Kolze, S. E. & Kelly, J. M. (1993). The Asper-

gillus niger carbon catabolite repressor gene, creA. Gene 130, 241-

245. 

 

Dudoit, S., Gendeman, R. C. & Quackenbush, J. (2003). Open 

source software for the analysis of microarray data. Biotechniques, 

45-51. 

 

Fedorova, N., Khaldi, N., Joardar, V. & other authors (2008). 
Genomic islands in the pathogenic filamentous fungus Aspergillus 

fumigatus. PLoS Genet 4. 

 

Fowler, T., Berka, R. M. & Ward, M. (1990). Regulation of the 

glaA gene of Aspergillus niger. Curr Genet 18, 537-545. 

 

Galagan, J. E., Calvo, S. E., Cuomo, C. & other authors (2005). 
Sequencing of Aspergillus nidulans and comparative analysis with 

A. fumigatus and A. oryzae. Nature 438, 1105-1115. 

 

Gautier, L., Cope, L., Bolstad, B. M. & Irizarry, R. A. (2004). 
affy - analysis of Affymetrix GeneChip data at the probe level. 

Bioinformatics 20, 307-315. 

 

Gentleman, R. C., Carey, V. J., Bates, D. M. & other authors 

(2004). Bioconductor: open software development for computa-

tional biology and bioinformatics. Genome Biol 5. 

 

Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., 

Antonellis, K. J., Scherf, U. & Speed, T. P. (2003). Exploration, 

normalization, and summaries of high density oligonucleotide 

array probe level data. Biostatistics 4, 249-264. 

 

Kato, N., Murakoshi, Y., Kato, M., Kobayashi, T. & Tsukago-

shi, N. (2002). Isomaltose formed by alpha-glucosidases triggers 

amylase induction in Aspergillus nidulans. Current Genetics 42, 

43-50. 

 

Klein, C. J. L., Olsson, L., Ronnow, B., Mikkelsen, J. D. & Ni-

elsen, J. (1996). Alleviation of glucose repression of maltose me-

tabolism by MIG1 disruption in Saccharomyces cerevisiae. Ap-

plied and Environmental Microbiology 62, 4441-4449. 

 

Larry, L., Barton, I., Carl, E., Georgi & David, R. L. (1972). 

Effect of maltose on glucoamylase formation by Aspergillus niger. 

J Bacteriol 111, 771-777. 

 

Machida, M., Asai, K., Sano, M. & other authors (2005). Ge-

nome sequencing and analysis of Aspergillus oryzae. Nature 438, 

1157-1161. 

 

Magnuson, J. K. & Lasure, L. L. (2004). Organic Acid Produc-

tion by Filamentous Fungi. Advances in Fungal Biotechnology for 

Industry, Agriculture, and Medicine, eds Jan and Lene Lange,, 

Kluwer Academic/Plenum Publishers. 

 

Needleman, R. B., Kaback, D. B., Dubin, R. A., Perkins, E. L., 

Rosenberg, N. G., Sutherland, K. A., Forrest, D. B. & Michels, 
C. A. (1984). MAL6 of Saccharomyces: A complex genetic locus 

containing three genes required for maltose fermentation. Proc 

Natl Acad Sci U S A 81, 2811-2815. 

 

Nierman, W. C., Pain, A., Anderson, M. J. & other authors 

(2006). Genomic sequence of the pathogenic and allergenic fila-

mentous fungus Aspergillus fumigatus. Nature 439, 502-502. 

 

Novak, S., Zechner-Krpan, V. & Maric, V. (2004). Regulation 

of maltose transport and metabolism in Saccharomyces cerevisiae. 

Food Technology and Biotechnology 42, 213-218. 

 

Patil, K. R. & Nielsen, J. (2005). Uncovering transcriptional regu-

lation of metabolism by using metabolic network topology. Proc 

Natl Acad Sci U S A 102, 2685-2689. 

 

Payne, G. A., Nierman, W. C., Wortman, J. R. & other authors 
(2006). Whole genome comparison of Aspergillus flavus and A. 

oryzae. Med Mycol 44, S9-S11. 

 

Pedersen, H., Beyer, M. & Nielsen, J. (2000). Glucoamylase 

production in batch, chemostat and fed-batch cultivations by an 

industrial strain of Aspergillus niger. Appl Microbiol Biotechnol 

53, 272-277. 

 

Pel, H. J., de Winde, J. H., Archer, D. B. & other authors 

(2007). Genome sequencing and analysis of the versatile cell facto-

ry Aspergillus niger CBS 513.88. Nat Biotechnol 25, 221-231. 

 

Schrickx, J. M., Krave, A. S., Verdoes, J. C., Vandenhondel, 
C., Stouthamer, A. H. & Vanverseveld, H. W. (1993). Growth 

and product formation in chemostat and recycling cultures by As-

pergillus niger N402 and a glucoamylase overproducing transfor-



W. Vongsangnak et al. 

10 

mant, provided with multiple copies of the glaA gene. Journal of 

General Microbiology 139, 2801-2810. 

 

Sinha, A. U. & Meller, J. (2007). Cinteny: flexible analysis and 

visualization of synteny and genome rearrangements in multiple 

organisms. BMC Bioinformatics 8. 

 

Smyth, G. K., Michaud, J. & Scott, H. S. (2005). Use of within-

array replicate spots for assessing differential expression in micro-

array experiments. Bioinformatics 21, 2067-2075. 

 

Thomas-Chollier, M., Sand, O., Turatsinze, J. V., Janky, R., 

Defrance, M., Vervisch, E., Brohee, S. & van Helden, J. (2008). 
RSAT: regulatory sequence analysis tools. Nucleic Acids Res 36, 

W119-W127. 

 

van Wezel, G. P., White, J., Young, P., Postma, P. W. & Bibb, 

M. J. (1997). Substrate induction and glucose repression of mal-

tose utilization by Streptomyces coelicolor A3(2) is controlled by 

malR, a member of the lacl-galR family of regulatory genes. Mole-

cular Microbiology 23, 537-549. 

 

Vongsangnak, W., Olsen, P., Hansen, H., Krogsgaard, S., Niel-

sen, J. & (2008). Improved annotation through genome-scale me-

tabolic modeling of Aspergillus oryzae. BMC Genomics 9. 

 

Workman, C., Jensen, L. J., Jarmer, H. & other authors 

(2002). A new non-linear normalization method for reducing va-

riability in DNA microarray experiments. Genome Biol 3. 

 

Wortman, J. R., Gilsenan, J. M., Joardar, V. & other authors 

(2009). The 2008 update of the Aspergillus nidulans genome anno-

tation: A community effort. Fungal Genetics and Biology 46, S2-

S13. 

 

Yu. J., Cleveland. T., Nierman. W. & Bennett. J. (2005). Asper-

gillus flavus genomics: gateway to human and animal health, food 

safety, and crop resistance to diseases. Rev Iberoam Micol 22, 194-

202. 

 

Yuan, X. L., van der Kaaij, R. M., van den Hondel, C., Punt, P. 

J., van der Maarel, M., Dijkhuizen, L. & Ram, A. F. J. (2008). 
Aspergillus niger genome-wide analysis reveals a large number of 

novel alpha-glucan acting enzymes with unexpected expression 

profiles. Mol Genet Genomics 279, 545-561. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Paper 4 
 

Uncovering transcriptional regulation of glycerol metabolism in Aspergilli  

through genome-wide gene expression data analysis 

 

Margarita Salazar
*
, Wanwipa Vongsangnak

*
,  

Gianni Panagiotou, Mikael R. Andersen, and Jens Nielsen 
*
Equal contribution 

 

Molecular Genetics and Genomics, 2009 

 



Mol Genet Genomics

DOI 10.1007/s00438-009-0486-y

ORIGINAL PAPER

Uncovering transcriptional regulation of glycerol metabolism 
in Aspergilli through genome-wide gene expression data analysis

Margarita Salazar · Wanwipa Vongsangnak · 
Gianni Panagiotou · Mikael R. Andersen · Jens Nielsen 

Received: 19 June 2009 / Accepted: 13 September 2009
©  Springer-Verlag 2009

Abstract Glycerol is catabolized by a wide range of
microorganisms including Aspergillus species. To identify
the transcriptional regulation of glycerol metabolism in
Aspergillus, we analyzed data from triplicate batch fermen-
tations of three diVerent Aspergilli (Aspergillus nidulans,
Aspergillus oryzae and Aspergillus niger) with glucose and
glycerol as carbon sources. Protein comparisons and cross-
analysis with gene expression data of all three species
resulted in the identiWcation of 88 genes having a conserved
response across the three Aspergilli. A promoter analy-
sis of the up-regulated genes led to the identiWcation of
a conserved binding site for a putative regulator to be
5�-TGCGGGGA-3�, a binding site that is similar to the
binding site for Adr1 in yeast and humans. We show that this
Adr1 consensus binding sequence was over-represented on

promoter regions of several genes in A. nidulans, A. oryzae
and A. niger. Our transcriptome analysis indicated that
genes involved in ethanol, glycerol, fatty acid, amino acids
and formate utilization are putatively regulated by Adr1 in
Aspergilli as in Saccharomyces cerevisiae and this tran-
scription factor therefore is likely to be cross-species con-
served among Saccharomyces and distant Ascomycetes.
Transcriptome data were further used to evaluate the high
osmolarity glycerol pathway. All the components of this
pathway present in yeast have orthologues in the three
Aspergilli studied and its gene expression response sug-
gested that this pathway functions as in S. cerevisiae. Our
study clearly demonstrates that cross-species evolutionary
comparisons among Wlamentous fungi, using comparative
genomics and transcriptomics, are a powerful tool for
uncovering regulatory systems.

Keywords Aspergillus species · Glycerol metabolism · 
Transcriptional regulation

Introduction

Glycerol is becoming of considerable importance in indus-
trial fermentation processes as it is a major by-product from
biodiesel production; and hereby represents a cheap carbon
source for bio-based production of chemicals. Glycerol is a
non-fermentable carbon source which can be utilized by
many yeast species, including Saccharomyces cerevisiae
and Wlamentous fungi such as Aspergillus nidulans, Asper-
gillus oryzae, and Aspergillus niger. Therefore, it would be
valuable to identify regulatory nodes that control glycerol
consumption in industrial relevant Aspergilli in order to
convert this by-product into chemicals or proteins for
further commercialization.
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In the yeast S. cerevisiae and Aspergilli, glycerol degra-
dation occurs via a two-step glycerol phosphorylative
pathway. In the Wrst step, glycerol is converted to glycerol-
3-phosphate by glycerol kinase (EC 2.7.1.30), product of
the gene GUT1, YHL032C in S. cerevisiae, AN5589.3,
JGI45434 and AO090001000509 in A. nidulans, A. niger
and A. oryzae, respectively. Glycerol-3-phosphate then
crosses the outer mitochondrial membrane, where it is oxi-
dized to glycerone phosphate by the inner mitochondrial
membrane enzyme, FAD+-dependent glycerol-3-phosphate
dehydrogenase (EC 1.1.99.5), which is encoded by the gene
GUT2, YIL155C in S. cerevisiae, JGI55910 in A. niger,
AN1396.3 in A. nidulans and AO090005001646 in A. ory-
zae (David et al. 2006; Ronnow and Kielland-Brandt 1993).
Finally, glycerone phosphate enters the cytosol, where it
is used either in the glycolytic or in the gluconeogenic
pathways.

During evolution Aspergilli have, like many other
organisms, developed eYcient regulatory systems for con-
trolling transcription, translation, protein stability and
activity. These regulatory systems allow the cell to shift
between the use of diVerent metabolic pathways and hereby
utilize preferred carbon and energy sources to obtain maxi-
mal growth. An example of this phenomenon is glucose
repression, where the presence of rapidly fermentable sug-
ars, such as glucose, represses a large number of genes
required for utilization of less preferred carbon sources
(Felenbok and Kelly 1996; Ruijter and Visser 1997; Strauss
et al. 1995). In S. cerevisiae, many genes encoding proteins
involved in metabolic adaptation showed increased expres-
sion during a shift from fermentative growth (glucose
based) to respiratory growth (ethanol or glycerol based).
Genes including ALD2 (YMR170C), encoding a cytoplas-
mic aldehyde dehydrogenase and ACS1 (YAL054C),
encoding an acetyl-CoA synthetase isoform, are up-regu-
lated on non-fermentative carbon sources. These two
enzymes direct the products of alcohol dehydrogenase into
the tricarboxylic acid and glyoxylate cycles. Increased
expression of PCK1 (YKR097W), encoding phosphoenol-
pyruvate carboxykinase, and FBP1 (YLR377C), encoding
fructose biphosphatase is also observed (DeRisi et al.
1997). These enzymes reverse the direction of metabolites
within the glycolytic pathway to favor the production of
glucose-6-phosphate (DeRisi et al. 1997). Increased tran-
script levels from genes involved in the general stress
response as well as up-regulation of genes involved in the
electron transport–oxidative phosphorylation systems and
the mitochondrial translation system have also been
observed during a shift from glucose to glycerol consump-
tion (Roberts and Hudson 2006).

Here, we aimed at the identiWcation of global regulatory
patterns of gene expression during a metabolic shift from
repressed to derepressed conditions. First, we conducted

well-controlled batch cultivations with either glucose or
glycerol as a carbon source with the three Aspergillus spe-
cies, A. nidulans, A. oryzae and A. niger. Subsequently, we
analyzed the transcriptome and used these data to identify a
conserved regulatory response among the three Aspergillus
species, which was found to be consistent with the response
reported previously for S. cerevisiae (Young et al. 2003). In
yeast, these gene expression changes appear to be general
features of the adaptation to respiratory growth. However,
they also show the aspects of an adaptation process which
is carbon source speciWc and seems to be cross-species con-
served among S. cerevisiae and other Ascomycetes species.

Materials and methods

Strains

The strains used in this study were A. niger BO1 and
A. oryzae A1560, both obtained from Novozymes (Carlsen
and Nielsen 2001; Pedersen et al. 2000), and the data for
A. nidulans were obtained using the strain FGSC A4. BO1
is a glucoamylase over-producer and A1560 is an �-amylase
producer. A. niger was maintained as frozen spore suspen-
sions at ¡80°C in 20% glycerol. A. oryzae stock culture
was maintained on Cove-N-Gly agar at 4°C and A. nidulans
stock culture was maintained on Sigma potato-dextrose-
agar (PDA) at 4°C.

Growth medium

The composition of the batch cultivation medium for A.
niger was the following: 20 g L¡1 glucose monohydrate or
glycerol, respectively, 7.3 g L¡1 (NH4)2SO4, 1.5 g L¡1

KH2PO4, 1.0 g L¡1 MgSO4·7H2O, 1 g L¡1 NaCl, 0.1 g L¡1

CaCl2·2H2O, 0.05 mL L¡1 antifoam 204 (Sigma) and
1 mL L¡1 of trace elements solution. Trace elements solu-
tion composition (g L¡1): 7.2 g ZnSO4·7H2O, 1.3 g
CuSO4·5H2O, 0.3 g NiCl2·6H2O, 3.5 g MnCl2·4H2O and
6.9 g FeSO4·7H2O. Complex media composition: 10 g L¡1

glucose monohydrate, 2 g L¡1 yeast extract, 3 g L¡1 tryp-
tone, 0.52 g L¡1 KCl, 0.52 g L¡1 MgSO4·7H2O, 1.52 g L¡1

KH2PO4, 20 g L¡1 agar and 1 mL L¡1 of trace elements
solution. The trace elements solution used in this case con-
tained (g L¡1): 0.4 g CuSO4·5H2O, 0.04 g Na2B4O7·10H2O,
0.8 g FeSO4·7H2O, 0.8 g MnSO4·H2O, 0.8 g
Na2MoO4·2H2O and 8 g ZnSO4·7H2O. In the case of A.
oryzae, several kinds of media were required. A. oryzae
spore propagation medium (Cove-N-Gly): 218 g L¡1 sorbi-
tol, 10 g L¡1 glycerol 99.5%, 2.02 g L¡1 KNO3, 25 g L¡1

agar and 50 mL L¡1 salt solution. Cove-N-Gly salt solu-
tion: 26 g L¡1 KCl, 26 g L¡1 MgSO4·7H2O, 76 g L¡1

KH2PO4, 50 mL L¡1 trace elements solution. Cove-N-Gly
123
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trace elements solution: 40 mg L¡1 Na2B4O7·10H2O,
400 mg L¡1 CuSO4·5H2O, 1,200 mg L¡1 FeSO4·7H2O,
700 mg L¡1 MnSO4·H2O, 800 mg L¡1 Na2MoO4·2H2O,
10 g L¡1 ZnSO4·7H2O. A. oryzae medium for pre-cultures
(G2-GLY): 18 g L¡1 yeast extract, 24 g L¡1 glycerol 87%,
1 mL L¡1 pluronic PE-6100. A. oryzae batch cultivation
medium: 2.4 g L¡1 MgSO4·7H2O, 3.6 g L¡1 K2SO4,
1.2 g L¡1 citric acid monohydrate, 2.4 g L¡1 KH2PO4,
3 g L¡1 (NH4)2HPO4, 1.2 g L¡1 pluronic acid (PE-6100)
and 0.6 mL L¡1 trace elements solution. Trace elements
solution composition (g L¡1): 14.3 g L¡1 ZnSO4·7H2O,
8.5 g L¡1 MnSO4·H2O, 13.8 g L¡1 FeSO4·7H2O, 2.5 g L¡1

CuSO4·5H2O, 3 g L¡1 citric acid monohydrate (as a chelat-
ing agent), and 0.5 g L¡1 NiCl2·6H2O. Carbon sources used
were glucose monohydrate or glycerol (15 g L¡1). A. nidu-
lans batch cultivation medium is reported in Panagiotou
et al. (2008).

Preparation of inoculum

Aspergillus niger BO1 and A. nidulans A4 fermentations
were inoculated with spores propagated on complex media
plates, respectively, incubated for 8 days at 30°C or
4–5 days at 37°C in the case of A. nidulans. The same stock
of spores was used to inoculate all plates. A. niger spores
were harvested by adding 10 mL of Tween 80 0.01%.
A. nidulans spores were suspended in 20 mL of distilled
water. A. niger and A. nidulans cultivations were inoculated
with a spore suspension to obtain a Wnal concentration of
6 £ 109 spores L¡1 and the same solution of spores was
used to inoculate the three replicates. A. oryzae A1560 fer-
menters were inoculated with approximately 60 g of broth
of A. oryzae A1560 previously cultured at 30°C for 24 h on
G2-GLY liquid medium in shake Xasks at 250 rpm. The
pre-cultures were inoculated with 5 mL of spore suspension
harvested from sporulated mycelium grown on Cove-N-
Gly agar at 34°C for 3–4 days. Spores were harvested with
Tween 80 0.1%.

Batch fermentations

To determine the physiological characteristics of the
strains, batch cultivations with the three Aspergilli were
carried out. A. niger fermentations were performed in 5 L
bioreactors with a working volume of 4.5 L. Reactors were
equipped with two Rushton four-blade disk turbines, pH
and temperature control. The temperature was maintained
at 30°C and the pH was controlled by automatic addition of
2 N NaOH. The pH was initially set to 3.0 to prevent spore
aggregation and only when spores started to germinate the
pH was increased to 4.5 and kept constant through the culti-
vation. Likewise, the stirring speed was initially set to
200 rpm and the aeration rate to 0.05 vvm (volume of gas

per volume of liquid per minute). After germination, these
parameters were increased to 600 rpm and 0.9 vvm and
kept steady throughout the rest of the fermentation. A. ory-
zae batch fermentations were conducted in 2 L reactors
with a working volume of 1.2 L. The stirrer speed was kept
at 800 rpm during the Wrst 4 h and then increased to
1,100 rpm. The pH was kept at 6 by addition of 10% of
H3PO4 or 10% NH3 solution, and the temperature was
maintained at 34°C. The aeration rate was set at 1.2 vvm.
A. nidulans batch fermentations were performed in 1.5 L
bioreactors with a working volume of 1.2 L. The bioreac-
tors were equipped with two disk-turbine impellers rotating
at 350 rpm. The pH was kept constant at 5.5 by addition of
2 N NaOH or HCl and the temperature was maintained at
30°C. Air was used for sparging the bioreactor at a constant
Xow rate of 1 vm. The concentrations of oxygen and carbon
dioxide in the exhaust gas were monitored with a gas ana-
lyzer (1311 Fast response Triple gas, Innova combined with
multiplexer controller for Gas Analysis MUX100, B. Braun
Biotech International) for A. nidulans and A. niger. For fer-
mentations with A. oryzae, the exhaust gas was measured
with a gas analyzer (Magnos 4G for O2, Uras3G for CO2,
Hartmann & Braun, Germany). In all cases, dissolved oxy-
gen tension was initially calibrated at 100%.

Sampling

For quantiWcation of cell mass and extracellular metabolites,
a known volume of cell culture was withdrawn from the
reactor, Wltered and washed. The culture Wltrates were frozen
at ¡20°C for subsequently sugar and extracellular metabo-
lite analysis. Cell dry weight was determined using nitro-
cellulose Wlters (pore size 0.45 �m, Gelman Sciences). The
Wlters were pre-dried in a microwave oven at 150 W for
15 min, cooled in a desiccator and subsequently weighed.
A known volume of cell culture was Wltered and the residue
was washed with distilled water and dried on the Wlter for
15 min in a microwave oven at 150 W or in an oven at
100°C for 24 h. The Wlter was weighed again and the cell
mass concentration was calculated. For gene expression
analysis, mycelium was harvested in the mid exponential
phase from each of the three biological replicates. The cul-
tures were Wltered through sterile Miracloth (Calbiochem,
San Diego, CA, USA) and washed with a suitable amount of
0.9% NaCl solution for A. nidulans and A. niger or distilled
water for A. oryzae. The mycelium was quickly dried by
squeezing and subsequently frozen in liquid nitrogen. Sam-
ples were stored at ¡80°C until RNA extraction.

Sugars and extracellular metabolites quantiWcation

The concentration of sugars and extracellular metabolites in
the Wltrates were determined using high pressure liquid
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chromatography (HPLC) on an Aminex HPX-87H ion-
exclusion column (BioRad, Hercules, CA, USA). The col-
umn was eluted at 60°C for A. niger and A. nidulans and at
45°C for A. oryzae with 5 mM H2SO4 at a Xow rate of
0.6 mL min¡1. Metabolites were detected with a refractive
index detector and an UV detector.

Total RNA extraction

Aspergillus niger and A. nidulans total RNA was isolated
using the Qiagen RNeasy Mini Kit (QIAGEN Nordic, Ball-
erup, Denmark), according to the protocol for isolation of
total RNA from plant and fungi. For the purpose, approxi-
mately 100 mg of frozen mycelium were placed in a 2 mL
tube, pre-cooled in liquid nitrogen, containing three RNase-
treated steel balls (two balls with a diameter of 2 mm and
one ball with a diameter of 5 mm). The tubes were subse-
quently shaken in a Mixer Mill, at 5°C for 10 min, until the
mycelium was ground to powder and thus ready for extrac-
tion of total RNA. A. oryzae total RNA was puriWed using
the Promega RNAgents Total RNA Isolation system fol-
lowing manufacturer’s recommendations. For puriWcation,
approximately 1 g of frozen mycelium was ground to pow-
der using a ceramic mortar and pestle. Mycelium was kept
in liquid nitrogen throughout the grinding processing. All
samples were inspected for good quality of total RNA
extracted with a BioAnalyzer (2100 BioAnalyzer, Agilent
Technologies Inc., Santa Clara, CA, USA). RNA quantiW-
cation was performed in a spectrophotometer (Amersham
Pharmacia Biotech, GE Healthcare Bio-Sciences AB,
Uppsala, Sweden) and total RNA was stored at ¡80°C
until further processing.

Microarray manufacturing and design

AVymetrix arrays were used for the analysis of the tran-
scriptome data of A. nidulans, A. oryzae and A. niger
(AVymetrix, Santa Clara, CA, USA). The arrays were pack-
aged in an AVymetrix® GeneChip cartridge (49 format),
and were processed with GeneChip reagents in the Gene-
Chip® Instrument System. The design and selection of
probes for interrogating gene expression levels based on the
genomes of A. nidulans FGSC A4 (BROAD Institute data-
base. Aspergillus nidulans genome database), A. oryzae
RIB40 (DOGAN database, Aspergillus oryzae genome
database) and A. niger ATCC 1015 (JGI database, Asper-
gillus niger genome database) was performed in our previ-
ous work (Andersen et al. 2008). The arrays contain a
maximum of 11 non-overlapping perfect match (PM)
probes of 25 oligomers length per gene. 11,122 probe sets
were represented in the microarray for A. niger, 12,039
probe sets plus an EST collection (courtesy of Novozymes)
for A. oryzae and 10,656 probe sets for A. nidulans.

Preparation of biotin-labeled cRNA and microarray 
processing

Biotin-labeled cRNA was prepared from approximately
5 �g of total RNA, according to the protocol described in
the AVymetrix GeneChip® Expression Analysis Technical
Manual (AVymetrix). All samples were prepared in the
same manner. The cRNA was cleaned before fragmentation
using the Qiagen RNeasy Mini Kit (protocol for RNA
Cleanup), in order to guarantee good-quality cRNA sam-
ples for subsequent processing. Biotin-labeled cRNA was
quantiWed in a spectrophotometer (Amersham Pharmacia
Biotech, GE Healthcare Bio-Sciences AB, Uppsala,
Sweden) and 20 �g was fragmented following the manufac-
turer recommendations. Approximately 15 �g of frag-
mented cRNA was hybridized to the 3AspergDTU AVymetrix
GeneChip (Andersen et al. 2008) following the AVymetrix
GeneChip® Expression Analysis protocol. Arrays were
washed and stained using a GeneChip® Fluidics Station
FS-400, and scanned on an Agilent GeneArray® Scanner
3000. The scanned probe array images (.DAT Wles) were
converted into .CEL Wles using the AVymetrix GeneChip
Operating Software.

Transcriptome analysis

AVymetrix CEL-data Wles were preprocessed using the sta-
tistical language R version 2.7.1 (R Development Core
Team 2007) and Bioconductor version 2.2 (Gentleman
et al. 2004). The probe intensities were normalized for
background by using the robust multi-array average method
with perfect match (PM) probes only (Irizarry et al. 2003).
Subsequent normalization was performed using the qspline
algorithm (Workman et al. 2002). Gene expression indexes
were calculated from the PM probes with the median polish
summary method (Irizarry et al. 2003). All statistical pre-
processing methods were implemented in aVy package
(Gentleman et al. 2004) using R scripts (Dudoit et al.
2003). Statistical analysis was applied to identify diVeren-
tial gene expression levels based on three replicates for
each condition. Moderated Student’s t-tests between the
two carbon sources for each Aspergillus spp. was con-
ducted by using limma package (Smyth 2004). Empirical
Bayesian statistics were used to moderate the standard
errors within each gene and Benjamini–Hochberg’s method
to adjust for multiple testing (Benjamini and Hochberg
1995). Unless otherwise stated, a cut-oV of adjusted P value
<0.05 was used to assess for statistical signiWcance.

Protein sequence comparisons

A cross-comparison between the amino acid sequences of
the predicted ORFs from each of the three Aspergillus
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genomes, based on DOGAN (DOGAN database, Aspergil-
lus oryzae genome database), JGI (JGI database, Aspergil-
lus niger genome database) and BROAD Institute
databases (BROAD Institute database, Aspergillus nidulans
genome database) using the BLASTP algorithm, was
applied (Altschul et al. 1990). The A. oryzae genome
sequence (NBRC 100959), A. nidulans FGSC A4 version
3.1 and A. niger ATCC 1015 version 1.0 were used. An
estimated expectation value cut-oV of 1E-30 was set to
assess for statistical signiWcance. The best hit, based on the
score, was selected for the case in which the protein query
produced more than one hit. Bi-directional best hits were
found by comparing the lists of best hits for two species
against each other (i.e. Niger_Oryzae, Oryzae_Niger) and
selecting those genes where the best hit in the other organ-
ism was the same best hit, thus giving a conservative set of
1:1 homologues for all three pair-wise comparisons. Tri-
directional best hits were found by comparing the three lists
of bi-directional hits (Niger_Oryzae, Nidulans_Oryzae,
Niger_Nidulans) and selecting the genes that had a 1:1:1-
relationship in all comparisons between all three species.
The full subset of tri-directional homologues is given in
Supplementary Table 1.

Detection of conserved regulatory elements

Several bioinformatics tools were applied for the detection
of conserved regulatory elements. As a Wrst step, pattern
recognition was conducted in Regulatory Sequence Analy-
sis Tools (RSAT) (van Helden et al. 1998) using the option
of oligo-analysis. The method is based on the detection of
over-represented oligonucleotides. The statistical signiW-
cance of a site was assessed based on pre-computed tables
of oligonucleotide frequencies observed in all non-coding
sequences from A. oryzae and A. nidulans genomes, respec-
tively, as these two organisms are supported by the applica-
tion. In the case of A. niger, our own frequency table was
calculated based on the intergenic regions from scaVold 1
of the A. niger ATCC 1015 genome sequence for 6, 7 and 8
base pairs (bps) oligonucleotides. Intergenic regions con-
taining unknown bases (N’s) were removed from the train-
ing set leaving 1,214 sequences. The motif recognition was
computed by running the analysis with a 1,000 bps
upstream region counted from the start codon of each gene
or predicted transcription start site in the case of A. niger.
A subset of 243 promoters, 3 times 81 promoters for each
of the species, was analyzed. Statistical analysis was con-
ducted to Wnd consensus motifs in the subsets of 81 up-reg-
ulated conserved genes as well as in the 5 down-regulated
conserved genes in the 3 Aspergilli species. The analysis
was done considering a diVerent length of consensus pat-
terns, ranging from 6 to 8 bps for each Aspergillus. After
having a number of probable consensus conserved motifs;

these were further inspected using R 2.7.1 and Cosmo
package (Bembom et al. 2007). Default settings were used
and the program was run for diVerent pattern lengths.
A background Markov model was computed using the inter-
genic regions from scaVold 1 of the A. niger ATCC 1015
genome sequence as previously reported (Andersen et al.
2008). The two component mixture (TCM) model was used
to search for a conserved motif where the maximum num-
ber of sites was increased to include all 174 binding sites.
Finally, a more reWned search for potential transcription
factor binding sites in the subset sequences was done with
the pattern search program Patch using TRANSFAC 6.0
public sites (http://www.gene-regulation.de/).

GO term enrichment analysis

GO term enrichment analysis was conducted with the
A. niger ATCC 1015 conserved up-regulated genes list (81
genes) and with the signiWcantly diVerentially expressed
genes list (P value < 0.05) using R 2.7.1 (R development
Core Team 2007) with BioConductor (Gentleman et al.
2004) and the topGO-package v. 1.2.1 with the elim algo-
rithm to remove local dependencies between GO terms
(Alexa et al. 2006). GO term assignments were based on
automatic annotation of the A. niger ATCC 1015 version
1.0 gene models, a cut-oV of P value <0.05 was used to
assess signiWcance.

Results

Protein comparisons

To identify conserved regulatory systems between the three
Aspergillus species as well as to exploit both similarities and
diVerences at the protein level, genes having orthologues in
the three species were identiWed using a BLASTP based
comparison (Altschul et al. 1990). Initially, A. nidulans,
A. oryzae and A. niger genome-wide protein sequences were
compared among each other in order to obtain tri-directional
homologues as described in “Materials and methods”. By
deWning a threshold of E value of 1E-30, 5,190 orthologues
were found to be conserved in all three species (List of tri-
directional homologues, Supplementary Table 1). The set of
conserved genes (1:1:1 orthologues) was used for further
analysis of the transcriptome data.

Fermentation results

In order to analyze the conserved transcriptional response
toward a change of carbon source from glucose to glycerol
and to have a complete dataset of transcriptome data in all
three Aspergillus species; we collected fermentation data
123
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from our previous work and conducted new fermentation
experiments under the same conditions required for each
strain. A. oryzae cultivations carried out on glucose are part
of our published results in the report by Andersen et al.
(2008), A. niger batch fermentations on glucose are from
the report of Vongsangnak et al. (2009) and A. nidulans
batch fermentations data on glucose and glycerol are from
the report of Panagiotou et al. (2008). Fermentations on
glycerol with A. oryzae and A. niger were conducted spe-
ciWcally for this study under the conditions deWned in
“Materials and methods”. Each Aspergillus species had its

own speciWc cultivation medium and all fermentations were
run in three biological replicates. A summary of all fermen-
tation results are shown in Fig. 1. Figure 1a shows the sub-
strate and biomass concentration proWles for each
Aspergillus spp. Figure 1b shows the statistics of the physi-
ological characterization data. In all three species, both car-
bon sources were completely exhausted; nevertheless,
glucose was consumed at a faster consumption rate than
glycerol. For A. oryzae, the maximum speciWc growth rate
on glucose was 0.38 § 0.004 h¡1 while it was
0.30 § 0.004 h¡1 on glycerol. In the case of A. nidulans

Fig. 1 Summary of batch 
fermentation parameters of 
A. nidulans, A. oryzae and 
A. niger grown on glucose or 
glycerol as sole carbon source. 
a Fermentation proWles of a 
representative replicate. Filled 
diamonds Substrate 
concentration (g/L). Filled 
squares Biomass concentration 
(g DW/kg). All fermentations 
were performed in three 
biological replicates. 
b Summary of batch cultivations 
statistics. For all cultivations, 
maximum speciWc growth rate 
(�max), biomass yield (Ysx), time 
of sampling for transcriptome 
analysis (TA), and biomass 
concentration at the time of 
sampling for transcriptome 
analysis (TA) are given. nd Not 
determined

Strain
Carbon 
source

µmax

(h-1)

Ysx

(g DW/g  substrate)

Time of 
sampling

(h)

Biomass 
concentration

(g DW/kg)

A. nidulans Glucose 0.23±0.020 0.47±nd ~ 22 6.33±0.40

Glycerol 0.11±0.010 0.42±nd nd 6.50±0.50

A. oryzae Glucose 0.38±0.004 0.54±0.013 ~6 2.50±0.09

Glycerol 0.30±0.004 0.52±0.008 ~8 2.44±0.05

A. niger Glucose 0.22±0.015 0.57±0.053 ~21 3.74±0.06

Glycerol 0.05±0.007 0.40±0.022 ~36 0.88±0.29
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and A. niger, the growth rates diVerences on the two carbon
sources were more prominent. For A. nidulans, the maxi-
mum speciWc growth rate on glucose was double that on
glycerol; and for A. niger, growth on glycerol was four
times slower when compared to glucose (Fig. 1b). The
diVerence on growth rates in the three Aspergilli might be
due to several reasons, but one of them is most likely that
glycerol is a favorite carbon source for the A. oryzae strain
A1560 used in this study (Vongsangnak et al. 2008) besides
the cultivation conditions, which have been optimized for
growth (Novozymes’s fermentation conditions). In addition
to the maximum speciWc growth rates and biomass yields,
sampling times and biomass yields at the time of sampling
for transcriptome analysis (TA) were recorded for the three
Aspergillus species (Fig. 1b).

Transcriptome data analysis

Genome-wide gene expression data were analyzed for all
three sets of glucose and glycerol batch fermentations for the
three Aspergillus species. A t-test pair-wise comparison for
each Aspergillus spp. on glycerol versus glucose (cut-oV
P value <0.05) revealed 904, 1,145 and 3,058 signiWcantly
diVerentially expressed genes for A. nidulans, A. oryzae and
A. niger, respectively. From the subset of signiWcantly diVer-
entially expressed genes in each Aspergillus, there were 69
metabolic genes in A. nidulans (Supplementary Fig. 1), 182
metabolic genes in A. oryzae (Supplementary Fig. 2) and
278 metabolic genes in A. niger (Supplementary Fig. 3). The
in-house reconstructed A. oryzae metabolic map was used as
a visualization tool for plotting the gene expression changes
for each Aspergillus spp. (Vongsangnak et al. 2008). The
genes mapped to the metabolic pathways illustrated in
Supplementary Fig. 4 (details in Supplementary Figs. 1 to 3)
were signiWcantly up-regulated on glycerol media in A. niger
and A. oryzae. In a previous transcriptome study in A. nidu-
lans (David et al. 2006), but using another DNA array plat-
form, we found the same number of metabolic genes to be
diVerentially expressed when comparing glucose to glycerol
growth with the same P value cut-oV. Surprisingly, the tran-
scriptional regulator CreA was only found in the subset of
conserved and diVerentially expressed genes between
A. niger and A. nidulans. CreA was not found in the subset
of diVerentially expressed genes in A. oryzae and thereby,
not captured in the conserved regulatory response.

Subsequently, these three subsets of signiWcant genes in
all three species were compared to the list of 5,190 con-
served genes in the three Aspergilli (Supplementary
Table 1) as well as with each other. This resulted in the
identiWcation of 88 conserved genes that were diVerentially
expressed in all three species (Fig. 2). Among them, 81
genes were up-regulated during growth on glycerol, 5 genes
were down-regulated and 2 genes did not show a clear trend

(Supplementary Table 2). In order to identify signiWcant ten-
dencies in the transcriptome proWles of the three Aspergillus
species, a GO term enrichment analysis was conducted on
the subset of the 81 up-regulated and conserved genes.
Among the over-represented GO terms from biological pro-
cesses we found pyruvate metabolism, amino acid metabo-
lism, speciWcally tyrosine, valine and the aromatic amino
acids metabolism, as well as GO terms for genes involved in
gluconeogenesis, the hexose biosynthetic process and the
alcohol and monosaccharide biosynthetic process (details in
Supplementary Table 4). Individual examination of the up-
regulated genes showed the presence of genes involved in
fatty acid metabolism, amino acid metabolism, ribosome
biogenesis and peroxisomal biogenesis (Table 1).

The obtained response of 88 diVerentially expressed
genes in the 3 species suggests a conserved regulatory
response across the Aspergillus genus, from which, there
were several genes with unknown function (Supplementary
Table 2), whereas the function of several of the other pro-
teins is only inferred. From the subset of the 48 annotated
genes (BROAD Institute database, Aspergillus nidulans
genome database, DOGAN database, Aspergillus oryzae
genome database and JGI database, Aspergillus niger
genome database), there were at least two predicted trans-
porters of the major facilitator superfamily (MFS); namely,
AN10075.3 and AN6703.3 and its corresponding ortholo-
gous genes in A. oryzae and in A. niger that were up-regu-
lated on glycerol (Table 1). The rest, which corresponds to
40 genes, are predicted as hypothetical proteins which
results were obtained from the genome annotation and
whose function has not been conWrmed by any experimen-
tal evidence supported by a publication. Interestingly, the

Fig. 2 Venn diagram of signiWcantly diVerentially expressed genes
from glycerol versus glucose by pair-wise comparison for each Asper-
gillus species. The colored overlapping middle area contains the genes
that are signiWcantly diVerentially expressed and conserved in all three
Aspergillus species. The numbers on a white background represent the
non-conserved genes in all three Aspergilli, but still diVerentially
expressed in a single species. Adjusted P value cut-oV <0.05 (color
Wgure online)
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Table 1 Conserved gene expression response of A. nidulans, A. oryzae and A. niger on glycerol medium. 88 diVerentially expressed genes were
conserved in all three Aspergilli

ORF Functional annotation

A. nidulans A. oryzae A. niger

AN6723 AO090005000447 JGI209864 2,3-Dihydroxybenzoate carboxylyase (dhbD)/metal-dependent 
hydrolase of the TIM-barrel fold

AN1897 AO090003000210 JGI38851 Homogentisate 1,2-dioxygenase

AN6399 AO090005000599 JGI52058 Bleomycin hydrolases

AN1899 AO090003000208 JGI199151 4-Hydroxyphenylpyruvate dioxygenase

AN0051 AO090120000371 JGI184789 Isopenicillin N synthase and related dioxygenases

AN3741 AO090005000125 JGI44729 Alcohol dehydrogenase (alcB), class V, EC number 1.1.1.1a

AN1896 AO090003000211 JGI199148 Fumarylacetoacetase, EC number 3.7.1.2

AN5860 AO090026000494 JGI197162 MFS monosaccharide transporter (major facilitator superfamily) (mstC)DOWN

AN8130 AO090102000470 JGI138792 NAD/NADP transhydrogenase beta subunit

AN7451 AO090001000717 JGI37620 NAD-dependent glutamate dehydrogenase, EC number 1.4.1.2

AN10981 AO090701000398 JGI213851 Bifunctional GTP cyclohydrolase II/3, 
4-dihydroxy-2-butanone-4-phosphate synthase

AN2133 AO090102000246 JGI53518 UPRTase, uracil phosphoribosyltransferase (furA), EC number 2.4.2.9

AN1726 AO090001000555 JGI43391 3-Methyl-2-oxobutanoate dehydrogenase (lipoamide)

AN4691 AO090020000497 JGI180570 Dehydrogenases with diVerent speciWcities

AN5690 AO090005000103 JGI57198 Copper amine oxidase (AO-I and AO-II), EC number 1.4.3.6

AN8496 AO090009000063 JGI213815 Ribulose-5-phosphate 4-epimerase and related epimerases and aldolases

AN10075 AO090026000207 JGI124797 Permease of the major facilitator superfamily

AN0554 AO090023000467 JGI55742 Aldehyde dehydrogenase (aldA), EC number 1.2.1.3a

AN5833 AO090011000917 JGI185892 Propionate/acetate CoA ligase/acyl-CoA synthetase

AN4901 AO090003000638 JGI197415 Glutaminase A, EC numer 3.5.1.2

AN0485 AO090023000254 JGI205368 Phosphatidylinositol transfer protein PDR16 and related proteins

AN4687 AO090020000492 JGI181451 3-Methylcrotonyl-CoA carboxylase

AN1733 AO090001000549 JGI208879 Delta-1-pyrroline-5-carboxylate dehydrogenase, EC numer 1.5.1.12

AN9138 AO090038000537 JGI54468 Amidase/acetamidase, EC number 3.5.1.4

AN4170 AO090003000144 JGI52919 Carbon catabolite repression protein CreDDOWN

AN4659 AO090011000447 JGI121695 Acyl-CoA synthetase/AMP-binding domain protein

AN10030 AO090020000517 JGI200187 Subtilisin-related protease/Vacuolar protease B 
(PepC)/Serine protease (Alp2)

AN8559 AO090023000349 JGI192202 Branched chain alpha-keto acid dehydrogenase E1, beta subunit

AN7641 AO090701000307 JGI204355 Copper amine oxidase (maoN, AO-I, AO-II), EC number 1.4.3.6

AN4779 AO090020000332 JGI209032 NIPSNAP1 protein

AN6703 AO090005000420 JGI180069 Permeases of the major facilitator superfamily

AN7529 AO090001000612 JGI178113 Metal-dependent amidase/aminoacylase/carboxypeptidase

AN4688 AO090020000493 JGI209685 Isovaleryl-CoA dehydrogenase, EC number 1.3.99.10

AN5669 AO090009000195 JGI55680 Succinyl-CoA:alpha-ketoacid-CoA transferase

AN6985 AO090206000019 JGI53716 Ribulokinase, EC number 2.7.1.47

AN3184 AO090012000809 JGI55604 Aldose 1-epimerase, EC number 5.1.3.3

AN9075 AO090038000620 JGI212771 NADPH: quinone reductase

AN8163 AO090102000483 JGI54341 Short-chain dehydrogenase/reductase SDR

AN8242 AO090102000588 JGI188214 Lipase

AN4201 AO090009000486 JGI187366 Acyl-CoA synthetase/AMP-binding domain protein

AN0129 AO090120000287 JGI211917 Protein tyrosine phosphatase Pps1, EC number 3.1.3.48

AN4245 AO090001000449 JGI120161 Ceramidase

AN10520 AO090023000421 JGI44810 Alpha/beta hydrolase
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presence of a glycerol transport system was demonstrated
earlier in A. nidulans where glycerol uptake defective
mutants were selected at high concentrations of glycerol
(Visser et al. 1988). The glcC mutant discussed in this pub-
lication was defective in glycerol uptake by mutation on a
possible glycerol transporter which was mapped to linkage
group VI (Visser et al. 1988). In our case, the two A. nidu-
lans MFS genes, AN10075.3 and AN6703.3, are mapped to
linkage group VIII, Contig 6:256957¡258913+, and link-
age group I, Contig 112:48095¡49693+, respectively
(BROAD Institute database, Aspergillus nidulans genome
database). Therefore, it seems unlikely that we are address-
ing the same glycerol transporters.

A closer look at the transcriptome results showed diVer-
ences on the preference of glycerol utilization pathways in
A. nidulans, A. niger and A. oryzae. In naturally glycerol
utilizing fungi, glycerol (GL) can be phosphorylated either
into glycerol-3-phosphate (GL3P) and further oxidized by
the FAD+-dependent glycerol-3-phosphate dehydrogenase into
glycerone phosphate (T3P2), which then enters glycolysis.
In the other pathway, glycerol can be converted through
NAD+/NADP+ glycerol dehydrogenases into glycerone
(GLYN) and further phosphorylated by glycerone kinase
into T3P2. A simpliWed scheme of the metabolic pathways
leading to or from glycerol is illustrated in Fig. 3.

Detection of conserved motifs

One or more conserved transcriptional regulators were sus-
pected to be up-regulating the subset of 81 genes or down-
regulating the subset of 5 down-regulated genes within the
group of 88 genes having a conserved transcriptional
response. Statistical promoter analysis was conducted for
all 3 data sets of 81 up-regulated genes on glycerol
medium. By inspecting the upstream sequences of each
up-regulated orthologues dataset, giving a subset of 243
promoters (3 £ 81 promoters), we found the most over-rep-
resented pattern to be “TGCGGGGA” (reverse comple-
ment, TCCCCGCA). The corresponding logo plot is shown
in Fig. 4. The same analysis was conducted with the subset
of down-regulated genes, but no consensus cis-acting regu-
latory element was found. Based on a literature search, it
was proposed that TGCGGGGA is the consensus binding
sequence of the transcriptional activator Adr1, which has
been found to regulate several pathways in S. cerevisiae
(Young et al. 2003) and in humans (Das and Baez 2008).
The consensus binding sequence of Adr1 in humans is
GCGGGGA, which regulates the transcription of psen1
(gene encoding presenilin 1) (Das and Baez 2008), a trans-
membrane protein that functions as a part of the gamma-
secretase protease complex. In S. cerevisiae, Adr1 is known

Table 1 continued

a The enzymes highlighted in bold have been proved to be regulated by Adr1 in the yeast S. cerevisiae

Genes unmarked mean up-regulated on glycerol medium. Genes marked with “DOWN” mean down-regulated on glycerol medium. Genes with
functional annotation available are listed. Complete list of conserved genes and log2 ratios are listed in Supplementary Table 2

ORF Functional annotation

A. nidulans A. oryzae A. niger

AN4102 AO090009000356 JGI56782 Beta-glucosidase A and related glycosidases (bglA), EC number 3.2.1.21

AN1918 AO090003000174 JGI208685 Phosphoenolpyruvate carboxykinase (ATP), EC number 4.1.1.49

AN9384 AO090124000014 JGI51356 Cytochrome P450 alkane hydroxylase

AN3639 AO090003001008 JGI189170 Dihydrolipoamide transacylase (alpha keto acid dehydrogenase E2 subunit)

AN0942 AO090005001078 JGI46405 L-arabitol dehydrogenase (ladA), EC number 1.1.1.12

Fig. 3 Glycerol utilization 
pathways in Aspergillus species 
leading to the production of the 
glycolytic intermediate glycero-
ne phosphate. The abbreviation 
of metabolites is described as 
follows: GL glycerol, GLYAL 
D-glyceraldehyde, GLYN 
glycerone, GL3P sn-glycerol 
3-phosphate, T3P2 glycerone 
phosphate
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to regulate several pathways including glycerol metabolism
and fatty acid metabolism (Young et al. 2003). The consen-
sus binding sequence is TTGG(A/G)GA, where according
to Cheng et al. (1994) there are only four essential base
pairs: GG(A/G)G. From the subset of 81 up-regulated
genes, 24 genes contained the motif TGCGGGGA in all
three Aspergillus species and 30 of the total of 72 genes had
it more than once, while in general, it was located at an
average position of 650 bps upstream from the start codon.
The location of the Adr1 promoter binding sites are sum-
marized in Supplementary Table 5. From this subset of 24
up-regulated genes, 5 of them had orthologues in S. cerevi-
siae; namely, ADH2 (YMR303C) or alcB in Aspergillus;
ALD5 (YER073W) or aldA in Aspergillus, ACS2
(YLR153C), CCC1 (YLR220W) and PUT2 (YHR037W).
This conserved up-regulatory response in all three Asper-
gillus spp. suggests that these genes might be activated by a
common cross-species conserved transcription factor,
which could be Adr1 as it is found to be in S. cerevisiae
regulating, i.e. ADH2 and ALD5 (Young et al. 2003)
(Table 1).

Amino acid metabolism is also regulated by Adr1 in
S. cerevisiae (Young et al. 2003). A list of enzymes involved

in amino acid metabolism and thought to be regulated by
Adr1 in the three Aspergilli is shown in Table 2. Bag7,
Car2 and Put4, orthologues were signiWcantly up-regulated
on glycerol in A. niger and to a lower extent in A. oryzae
(Supplementary Table 3). Of particular interest are Put2
orthologues which were up-regulated on glycerol in the
three Aspergillus species and therefore, captured as a con-
served transcriptional response. Put2 is a mitochondrial
delta-1-pyrroline-5-carboxylate dehydrogenase involved in
utilization of proline as sole nitrogen source (SGD data-
base, Saccharomyces Genome Database).

Stress response relevant components

Further inspection of transcriptome data in all three Asper-
gillus species pinpointed signaling pathways involved in
stress response and several histidine kinases regulating a
number of processes as diVerentially expressed. Osmotic
stress components are summarized in Supplementary
Table 6 and the proposed mechanism in S. cerevisiae and
Aspergilli is shown in Fig. 5a, b, respectively. Interestingly,
there are 15 histidine kinases (HKs) reported to exist in
A. nidulans (Suzuki et al. 2008). However, we found ortho-
logues for only 9 of these kinases under the statistical con-
straints imposed in the three Aspergilli, implicating that
A. nidulans might have more histidine kinases regulating
more processes besides osmoadaptation, i.e. sexual develop-
ment (Appleyard et al. 2000; Blumenstein et al. 2005) than
A. oryzae and A. niger, which are presumed to be asexual
fungi. We maintained the histidine kinases classiWcation
described by Kobayashi et al. (2007), where based on amino
acid sequence similarity, Aspergillus histidine kinases were
classiWed into nine families. According to these authors, for
i.e. in A. oryzae there are three predicted histidine kinases
belonging to family 3, whereas for A. nidulans there is solely
one (Kobayashi et al. 2007). Therefore, this has its implica-
tions when considering A. nidulans histidine kinase list as a
query for Wnding the best hit on the other two Aspergillus
species. The A. niger histidine kinase orthologues
JGI183029 (tcsA), JGI39736 (nikA), JGI41708 (fphA),
JGI174132 (hk-8-4*) and JGI54610 (hk-9*) (details in Sup-
plementary Table 7) were all signiWcantly up-regulated on
glycerol compared to glucose fermentations and these
results are in accordance to the up-regulation seen in the
osmotic stress components listed in Supplementary Table 6.

Discussion

Glycerol utilization

Glycerol metabolism in Aspergillus species is not studied
as well as in the yeast S. cerevisiae. In particular, regulation

Fig. 4 Logo plot of the over-represented motif from the 81 promoter
regions of A. nidulans, A. oryzae and A. niger genes signiWcantly
up-regulated on glycerol medium. The nucleotides representing the
sequence are stacked on top of each other for each position in the
aligned sequences. The height of each nucleotide is made proportional
to its frequency, and the nucleotides are sorted so that the most com-
mon is on top. The height of the entire stack is then adjusted to signify
the information content of the sequences at that position (Schneider
and Stephens 1990). The “x axis” indicates the position of the corre-
sponding nucleotide (A, T, C or G). “y axis” represents the information
content of the corresponding nucleotide at each position in a bits scale,
where 2 is the maximum value
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of the biosynthesis and breakdown of glycerol are less stud-
ied in Aspergilli when compared to the metabolism of other
carbon sources such as ethanol (David et al. 2006). Only a
few previous studies have reported glycerol utilization
pathways, for instance, Hondmann et al. (1991) in A. nidu-
lans and later David et al. (2006). Through biochemical and
genetical analyses, Hondmann et al. (1991) demonstrated
that glycerol is catabolized by a glycerol kinase and a mito-

chondrial FAD+-dependent glycerol-3-phosphate dehydro-
genase and that the levels of both enzymes are controlled
by carbon catabolite repression and by speciWc induction in
A. nidulans. Interestingly, the data obtained from our tran-
scriptome analysis conWrmed that the catabolic pathway via
glycerol-3-phosphate is the major route for glycerol catabo-
lism in A. nidulans and in A. niger. In another study, a glyc-
erol kinase mutant of A. niger showed weak growth on

Table 2 Systems regulated by Adr1 and its orthologues in A. nidulans, A. oryzae and A. niger

a Promoters were shown to bind Adr1 in S. cerevisiae by chromatin immunoprecipitation assays (Young et al. 2002, 2003)
b According to SGD database
c According to Young et al. 2003
d Hits below BLASTP signiWcance threshold and not tri-directional in the three Aspergilli, E-value of 1E-30
e Orthologues are below BLASTP threshold, E-value of 1E-30. Nevertheless, they are conserved in all three Aspergillus spp
f According to Young et al. 2002
g Adapted from Hynes et al. 2008

Gene S. cerevisiae ORF A. nidulans ORF A. oryzae ORF A. niger ORF Annotation

General regulation of systems by Adr1

ADY2a YCR010C AN5226.3 AO090005001538 JGI53176 Acetate transporterb,c

ADH2a YMR303C AN3741.3 AO090005000125 JGI44729 Alcohol dehydrogenaseb,c

ACS1a YAL054C AN5626.3 No hitd JGI214348 Acetyl-CoA synthetase isoformb,c

GUT1a YHL032C AN5589.3 AO090001000509 JGI45434 Glycerol kinaseb,c

ALD4a YOR374W AN0554.3 AO090023000467 JGI55742 Mitochondrial aldehyde dehydrogenaseb,c

CIT3a YPR001W AN8275.3e AO090102000627e JGI202801e Citrate synthaseb,c

GIP2a YER054C AN2425.3 AO090026000188 JGI206783 Putative regulatory subunit of Glc7b,c

ICL2a YPR006C AN8755.3 AO090120000179 JGI42171 2-Methylisocitrate lyaseb,c

ETR1a YBR026C AN9401.3 AO090124000077 JGI206405 2-Enoyl thioester reductaseb,c

FDH2a YPL275W AN6525.3 AO090023000508 JGI124156 NAD+-dependent formate dehydrogenaseb,c

BAG7 YOR134W AN7650.3 AO090701000375 JGI119642 Rho GTPase activator (related to Sac7)b

Regulation of amino acid metabolism

CAR2 YLR438W AN1810.3 AO090023000546 JGI54525 L-ornithine transaminase (OTAse)

PUT4 YOR348C AN3359.3 AO090010000119 JGI43857 Proline permease

BAT1 YHR208W AN4323.3 AO090023000123 JGI190990 Branched amino acid aminotransferase

Regulation of fatty acids, �-oxidation and peroxisome biogenesis

SPS19 YNL202W AN7770.3 AO090701000656 JGI48719 2,4-Dienoyl-CoA reductase (NADPH)b,c

POX1a YGL205W AN6752.3 AO090005000479 JGI181397 Fatty acyl-CoA oxidaseb,c

POT1a YIL160C AN1050.3 AO090012000715 JGI38275 3-Ketoacyl-CoA thiolaseb,c,f

CTA1a YDR256C AN5918.3 AO090011000540 JGI206591 Catalaseb,c,f

PXA1 YPL147W AN10078.3 AO090003000864 JGI196686 Peroxisome ABC transporterb,c

PXA2 YKL188C AN1014.3 AO090012000602 JGI177847 Peroxisome ABC transporterb,c

FAA2 YER015W AN8280.3 AO090102000633 JGI188673 Long-chain fatty acyl-CoA synthetaseb,c

PEX1 YKL197C AN5991.3 AO090011000621 JGI48950 Pts1 and Pts2 protein importg

PEX6 YNL329C AN2925.3 AO090005001500 JGI41300 Pts1 and Pts2 protein importg

PEX13 YLR191W AN1511.3 AO090005000629 JGI57403 Pts1 and Pts2 protein importg

PEX3 YDR329C AN2281.3 AO090009000627 JGI192954 Peroxisome biogenesisg

PEX5 YDR244W AN10215.3 AO090005000623 JGI193981 Pst1 protein import receptorg

PEX7 YDR142C AN0880.3 AO090005001175 JGI35474 Pst2 protein import receptorg

PEX11 YOL147C AN1921.3 AO090003000168 JGI55954 Peroxisome proliferationg

ANT1 YPR128C AN0257.3 AO090102000637 JGI36158 Mitochondrial ATP carrierg
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glycerol and it was demonstrated that phosphorylation is an
important step in glycerol catabolism (Witteveen et al.
1990). Enzymatic analysis of both the mutant and the
parental strain showed that at least three diVerent glycerol
dehydrogenases were formed under diVerent physiological
conditions and sustained growth on glycerol (Witteveen
et al. 1990). In our study, the gene encoding glycerol kinase
as well as the gene encoding the FAD+-dependent glycerol-
3-phosphate dehydrogenase were signiWcantly up-regulated
on glycerol compared to glucose media in A. niger
(JGI45434 and JGI55910, respectively) and to a less extent
in A. oryzae (AO090001000509, and AO090005001646,
respectively). The A. niger glycerol kinase gene had a log2-
fold change of 3.3 and the FAD+-dependent glycerol-3-
phosphate dehydrogenase gene had a log2-fold change of 2.
The transcriptional response was not as evident in A. nidu-
lans orthologues (AN5589.3 and AN1396.3). In this case,
the gene expression changes were not statistically signiW-
cant. Nevertheless, previous transcriptome analysis reports
have shown their up-regulation on glycerol media com-
pared to glucose using another DNA microarrays platform
(David et al. 2006). Here, they reported a signiWcant up-
regulation of the A. nidulans gene encoding the glycerol
kinase (AN5589.3), as well as the gene encoding the
FADH-dependent glycerol-3-phosphate dehydrogenase
(AN1396.3) of 2.9-fold and 2.5-fold, respectively (David
et al. 2006).

An alternative pathway is also involved in the catabo-
lism of glycerol. In fact, a gene that was identiWed to
encode a putative NADPH-dependent glycerol dehydroge-

nase (AN7193.3, AO090023000264 and JGI55928 in
A. nidulans, A. oryzae and A. niger, respectively), was up-
regulated on glycerol in the three Aspergillus species. The
major up-regulation occurred in A. oryzae and to a lower
degree in A. niger and A. nidulans, where the gene expres-
sion changes were not captured as statistically signiWcant.
This up-regulation was previously reported by David et al.
(2006) in A. nidulans. Furthermore, the NAD+-dependent
glycerol dehydrogenase encoding gene (gldB) (AN5563.3,
JGI196413 and AO090009000563) was down-regulated in
all three species, being AO090009000563 from A. oryzae
the most aVected.

In A. oryzae, the most statistically signiWcant up-regu-
lated gene was the one encoding the enzyme glycerone
kinase, AO090120000396, which showed a log2 fold
change up-regulation on glycerol of 5 (Supplementary
Table 3). The A. niger orthologue was also up-regulated on
glycerol while the A. nidulans orthologue was not assessed
as signiWcantly diVerentially expressed, and consequently it
was not captured as an up-regulated conserved response as
shown in Table 1. It is likely that both pathways leading to
the glycolytic intermediate T3P2 are involved in glycerol
utilization in Aspergillus species. Nevertheless, the most
active pathway in A. oryzae is probably the one using glyc-
erol dehydrogenase and glycerone kinase to produce glyce-
rone phosphate. In contrast, in A. niger and A. nidulans, the
pathway using glycerol kinase and the FAD+-dependent
glycerol-3-phosphate dehydrogenase is most likely to be
the dominant (see Fig. 3). Another study in A. niger sup-
porting our transcriptome results has shown that glycerol

Fig. 5 Osmotic stress response 
models in S. cerevisiae and 
Aspergillus species. a HOG 
pathway mechanism in S. cerevi-
siae. The HOG pathway consists 
of two osmosensor branches, 
Sln1 and Sho1. In yeast, the 
HOG pathway is activated by the 
remaining branch if either Sln1 
or Sho1 is intercepted. b HOG 
pathway mechanism proposed 
for Aspergillus species; i.e. 
A. nidulans, A. oryzae and 
A. niger. The osmotic stress 
response results in activation 
of several components and 
ultimately in MsnA activation
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accumulated in a glycerol kinase mutant (Witteveen and
Visser 1995), which was able to synthesize glycerol, but
not able to catabolize it, suggesting that the activity of this
pathway is important for glycerol catabolism.

Regulation of gene expression by the Adr1 transcription 
factor

Adr1-dependent genes encode enzymes involved in chan-
neling metabolites into acetyl-CoA and NADH production
in S. cerevisiae. From transcriptome data analysis, genes
listed in Table 1 and mapped to metabolic pathways illus-
trated in Supplementary Fig. 4 (details in Supplementary
Figs. 1 to 3) are suspected to be expressed in an Adr1-
dependent manner in Aspergillus species based on the fact
that many of these genes were signiWcantly up-regulated on
glycerol media. According to S. cerevisiae studies, Adr1-
dependent genes are mainly present in pathways leading
from ethanol, glycerol, lactate and the oxidation of fatty
acids to the formation of acetyl-CoA, generating NADH in
the process (Young et al. 2003).

Adr1 regulates a diversity of genes which fall into a vari-
ety of functional classes in S. cerevisiae, such as non-fer-
mentative carbon metabolism, amino acid transport and
metabolism, peroxisomal biogenesis, meiosis and sporula-
tion, transcriptional regulation and signal transduction
(Young et al. 2003). Many of the regulated genes had
potential Adr1 binding sites in their promoters. Chromatin
immunoprecipitation experiments showed that Adr1 bound
to the promoters of genes such as ADH2, ACS1, CTA1,
POT1 and GUT1 (Young et al. 2002) and ADY2, ALD4,
POX1, CIT3, GIP2, ICL2, ETR1 and FDH2 (Young et al.
2003), demonstrating that Adr1 regulates directly those
genes. Interestingly, in our study, the Aspergillus ortho-
logues of these genes were up-regulated on glycerol media.
A number of these orthologues have the Adr1 binding motif
(TGCGGGGA) present several times in their promoter
regions (see Supplementary Table 5). In A. nidulans,
mutants aVecting glycerol uptake have been constructed
(Visser et al. 1988); however, a transcription factor respon-
sible for its metabolic regulation has not been identiWed yet.
We therefore propose that the Adr1 transcription factor is
conserved through evolution, present in Aspergillus species
and furthermore, responsible in concert with other tran-
scription factors for regulation of several pathways such as
glycerol metabolism as found in S. cerevisiae.

Interestingly, uptake of fatty acyl-CoA by peroxisomes
is also Adr1 dependent in S. cerevisiae (Young et al. 2003).
Fatty acids are Wrst activated to their corresponding acyl-
CoA thioesters in an ATP-dependent manner (Maggio-Hall
and Keller 2004). S. cerevisiae houses only peroxisomal
�-oxidation, while in contrast the Wlamentous fungus A. nidu-
lans houses both peroxisomal and mitochondrial �-oxidation,

similar to mammals and plants (Hynes et al. 2008). In our
microarray study, several components of fatty acid �-oxi-
dation and peroxisome biogenesis have been signiWcantly
up-regulated on glycerol, particularly in A. oryzae and
A. niger. Sps19, Pox1, Pot1 and a Cta1 orthologue in
A. oryzae, AO090011000540, encoding a catalase, which
breaks down hydrogen peroxide in the peroxisomal matrix
formed by acyl-CoA oxidase during fatty acid �-oxidation
were up-regulated on glycerol (SGD database, Saccharomyces
Genome Database). Besides in S. cerevisiae, Pxa1 and Pxa2
encode subunits of the ABC transporter responsible for
uptake of long-chain fatty acyl-CoA derivatives into
peroxisomes (Shani and Valle 1996). Similarly, we could
identify a statistically signiWcant up-regulation of Pxa2
orthologues on glycerol media in A. niger and A. oryzae
and of Pxa1 orthologue in A. oryzae. Likewise in a similar
transcriptome study in S. cerevisiae, Pxa1 and Pxa2 showed
dependence on Adr1 (Young et al. 2003). In addition,
medium chain fatty acids are converted into their acyl-CoA
derivative by a peroxisomal acyl-CoA ligase encoded by
Faa2, which is activated by Adr1 in yeast (Young et al.
2003) and where we found its corresponding orthologues in
A. niger and A. oryzae signiWcantly up-regulated on glyc-
erol. This suggests that fatty acids �-oxidation might be
also regulated by Adr1 in Aspergillus species in coopera-
tion with other transcription factors such as FarA and FarB
previously found in A. nidulans (Hynes et al. 2006).

Stress response

In yeast and fungi, glycerol has a role in regulating the
osmotic pressure in the cells (Blomberg and Adler 1992).
In the yeast S. cerevisiae, the high osmolarity glycerol
(HOG) pathway is activated by increased external osmolar-
ity and it consists of two upstream osmo-sensing input
branches, Sln1 and Sho1, and downstream kinases, which
constitute the mitogen-activated protein kinase, kinase,
kinase (MAPKKK) signaling cascade pathway (Hohmann
2002). The main components are shown in Fig. 5a); namely
Ssk2/Ssk22 (MAPKKK), Pbs2 (MAPKK) and Hog1
(MAPK) (Maeda et al. 1995). Activation of the HOG path-
way results in the induction of genes required for osmotic
adaptation in S. cerevisiae, for instance, glycerol biosynthe-
sis genes such as glycerol-3-phosphate dehydrogenase
(GPD1) (Albertyn et al. 1994) and glycerol-3-phosphatase
(GPP2) (Norbeck et al. 1996). Likewise, glycerol has been
shown to be involved in the osmotic response in A. nidu-
lans (Beever and Laracy 1986). All the components of the
HOG pathway in yeast have orthologues in A. nidulans
(Furukawa et al. 2005; Han and Prade 2002) and in other
Wlamentous fungi, such as Neurospora crassa, proteins
homologous to the yeast HOG components have also been
previously described (Fujimura et al. 2003).
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Here, we conducted a homology search to Wnd the
orthologous genes in the other two Aspergillus species.
The results are summarized in Supplementary Table 6 and the
proposed consensus osmo-sensing signaling cascade mech-
anism for these three Aspergillus species is depicted in
Fig. 5b). We found SHO1 orthologues in A. oryzae and
A. niger which were signiWcantly up-regulated on glycerol.
In addition, SLN1 orthologues were identiWed as diVerentially
regulated in the three Aspergillus species, but none of the
expression changes was statistically signiWcant. A previous
study showed that the sensor protein SlnA (AN1800.3) was
signiWcantly up-regulated and possibly induced when glyc-
erol was the sole carbon source when compared to glucose
or ethanol (David et al. 2006). Interestingly, YPD1 ortho-
logues in A. nidulans and A. niger, AN2005.3 and
JGI214261 were down-regulated. Additionally, SSK1,
SSK2 and PBS2 orthologues were up-regulated in one or
more Aspergillus species, but the only statistically signiW-
cant up-regulation was for A. niger. HOG1 orthologue
genes in the three Aspergillus were up-regulated with
exception of the A. niger HOG1 homologue. Interestingly,
the other HOG1 orthologue in A. nidulans, mpkC (Furuk-
awa et al. 2005) and a putative hogA, were up-regulated as
well as two other putative hogA orthologues in A. niger,
JGI187878 and JGI207710.

As it can be seen from the gene expression changes, the
most aVected Aspergillus species in relation to glycerol was
A. niger, where almost all the HOG pathway components
were statistically signiWcantly up-regulated. The response
in the other two Aspergillus, A. oryzae and A. nidulans, was
not as evident, nevertheless all the HOG pathway compo-
nents are conserved. It is quite interesting that the genes are
transcriptionally regulated as most signal transduction path-
ways are mainly activated through modiWcations at the
post-translational level.

A study by Furukawa et al. (Furukawa et al. 2005) in
A. nidulans proposed that activation of HogA depended on
the two-component signaling pathway, but not on ShoA.
Instead, they proposed that PbsB could activate another
Hog1 MAPK orthologue, named MpkC, when mpkC was
over-expressed in A. nidulans. They further proposed that
SskA regulates the A. nidulans HOG pathway in response
to a variety of external stimuli and suggested that unlike
yeast Sho1, it might not be involved in osmoresponsive
activation of HogA. Interception of the HOG pathway did
not cause a drastic sensitivity to high osmolarity, implying
that A. nidulans had one or more unknown osmoresponsive
pathways or unidentiWed mechanisms for osmoadaptation
(Furukawa et al. 2005). In contrast to our work, these
authors did not detect mpkC transcript levels in A. nidulans,
wild type or hogA deletion mutants under normal or stress
conditions. In contrast, we were able to identify a statisti-
cally signiWcant up-regulation of MpkC orthologue in

A. niger on glycerol while earlier transcriptome studies
showed mpkC up-regulation in A. nidulans as well (David
et al. 2006).

The other components of the Sho1 osmo-sensing
branch, Ste11 in S. cervisiae or its orthologue in A. nidu-
lans, SteC (Wei et al. 2003) as well as the coding genes of
Cdc24, Cdc42, Ste20 and Ste50 were also signiWcantly up-
regulated in A. niger. This suggests a partial activation of
both osmo-sensing pathways in A. nidulans, A. oryzae and
A. niger, through ShoA and SlnA. The osmoresponsive
mechanism can be generalized to be a conserved mecha-
nism in the three Aspergillus species due to the gene
expression patterns obtained; where in general, the hogA
orthologues in the three Aspergilli were up-regulated on
glycerol. In S. cerevisiae, phosphorylation of Hog1 is fast
and causes its immediate translocation to the nucleus
(Posas et al. 1996), where it phosphorylates several tran-
scription factors, for instance, Msn2, Msn4, Sko1 and
Hot1. Interestingly, in our study MsnA was signiWcantly
up-regulated in A. niger.

Our results have shown that comparative genomics and
transcriptomics of closely related species such as three
Aspergillus species can help in elucidating unknown regu-
latory mechanisms as well as in improving functional anno-
tation. This example applied to glycerol metabolism is of
biotechnological importance as glycerol is a major by-prod-
uct from biodiesel production; and thereby represents
a cheap carbon source which could be exploited for
bio-based production of chemicals. Our identiWcation of
a conserved regulatory element that controls glycerol
metabolism is important for future engineering of Aspergilli
as cell factories for sustainable chemical production.

Data deposition

Normalized gene expression values, obtained from batch
fermentations on glucose and glycerol medium for A. nidu-
lans, A. oryzae and A. niger, were deposited at the GEO
database (GEO database, Gene Expression Omnibus data-
base), with accession numbers GPL5975 (platform),
GSM393134-GSM393151 (samples) and GSE15702
(series).
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ABSTRACT 

 

Analysis of co-expressed genes in response to different perturba-

tions at the genome-level can provide new insight into global regu-

latory structures. Here we performed a cross-species comparative 

investigation by exploring genomes and transcriptional co-

expressions profiles in Aspergillus oryzae and Aspergillus niger. 

Based on analysis of conserved co-expressed genes, fatty acid 

catabolism via beta-oxidation, fatty acid transport, the glyoxylate 

bypass and peroxisomal biogenesis were identified as core co-

evolved pathways between the two species. The occurrence of co-

expression patterns, allowed for identification of DNA regulatory 

motifs and putative corresponding transcription factors, and we 

hereby show that comparative transcriptome analysis between two 

closely related fungi allows for identification of how genes in-

volved in the utilization of fatty acids, peroxisomal biogenesis and 

the glyoxylate bypass are regulated. Interestingly, “CCTCGG” was 

identified as a core binding site for putative FarA and FarB tran-

scription factors that govern the underlined biological processes. 

Phylogeny and domain architecture analysis of amino acid se-

quences of FarA and FarB in 8 species of aspergilli, clearly indi-

cate that these proteins are evolutionarily conserved across Asper-

gillus species as well as they are conserved in other fungi. 

INTRODUCTION 

The recently completed genome sequences of several Aspergillus 

species provide a good opportunity to better understand the biol-

ogy of fungi through comparative genomics. Comparison of DNA 

sequences in these fungal genomes enables us to identify genes and 

their functions as well as regulations based on evolutions (Fe-

dorova et al. 2008; Galagan et al. 2005; Nierman et al. 2006).  To 

translate information in DNA sequences to biological functions, 

functional genomics has emerged as a research field that involves 

systematic analysis of gene function via omics technologies (Brent, 

2000; Hieter & Boguski, 1997). Transcriptomics has been widely 

used in many studies with high reliability and reproducibility (Shi 

et al. 2008). Transcriptomics can be used for identification of co-

expressed genes which provide hints toward inferring gene func-

tion based on the concept of guilt-by-association, i.e. co-expressed 

genes are likely to serve similar purposes and to be regulated by 

similar mechanisms (Altman & Raychaudhuri, 2001; Schulze & 

Downward, 2001). 

 

Several publications have shown that clustering genes according to 

their mRNA expression profiles often share common upstream 

sequence motif (s) (Brazma et al. 1998; Tavazoie et al. 1999) al-

lowing for inferring the transcription factor (s) that potentially bind 

  
 

the motif (s) and probably regulate the genes in the cluster. This 

strategy has been widely applied in several organisms such as Sac-

charomyces cerevisiae (Young et al. 2003) (Wolfsberg et al. 1999), 

mammalian cells (Oldham et al. 2006), Arabidopsis thaliana 

(Vandepoele et al. 2009) and also filamentous fungi i.e. Aspergil-

lus nidulans (David et al. 2006).  A. niger and A. oryzae (Andersen 

et al. 2008b; Salazar et al. 2009; Vongsangnak et al. 2009). Al-

though several transcriptome data sets from previous studies have 

been publicly available, there are few insightful studies on tran-

scriptional regulation systems in aspergilli. Thus there is an oppor-

tunity to enrich the information content in already published data 

with the objective to perform analysis that leads to underline the 

core biological processes on both  genotype and expression in 

different aspergilli and hereby identify the possible coexistence of 

DNA regulatory motifs and transcription factors.  

 

In this study, we aim to carry out cross-species analysis of ge-

nome-wide transcriptional co-expression patterns under different 

growth conditions, specifically to identify concerted transcriptional 

changes of genes that clearly reflect cellular adaptations. Our 

analysis first focus on comparative analyses between A. oryzae and 

A. niger at the genome and the transcriptome levels. The results 

were combined to reconstruct core metabolic pathways in the two 

species which are co-evolved and have similar environmental re-

sponses. Our study demonstrates that most of the genes in these 

two species have similar environmental responses in terms of gene 

expression patterns, but there are a few of these responses that can 

be found to be due to conserved regulatory motifs between the two 

species. 

 

METHODS 
Pair-wise protein sequence comparisons 

The complete set of amino acid sequences of the open reading 

frames from A. oryzae RIB 40 (Machida et al. 2005) (version 1) 

and A. niger ATCC 1015  (version 3) (http://genome.jgi-

psf.org/Aspni5/Aspni5.home.html) were compared against each 

other by using BLASTP (Altschul et al. 1990) to identify their 

homologues. An estimated expectation values of cut-off of 1E-30, 

alignment length of 200 amino acids, and percentage identity of 40 

(%), were set to evaluate statistical significance of conserved 

orthologues. Bidirectional BLASTP was applied to obtain a con-

servative set of 1:1 orthologues between the two Aspergillus spe-

cies. The full subset of gene orthologues is listed in Supplementary 

file 1. 

 
Microarray data acquisition and analysis 

Affymetrix CEL-data files were preprocessed using the bioconduc-

tor package (Gentleman et al. 2004) on the R software version 

2.9.0 (R Development Core Team). Of the 13,120 putative genes 

identified in the genome of A. oryzae (Machida et al. 2005; Vong-
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sangnak et al. 2008), 12,039 probe sets were used for microarray 

analysis. Of the 11,200 putative genes identified in the genome of 

A. niger, 11,122 probe sets were used for microarray analysis. 

Normalization was performed by using the qspline algorithm 

(Workman et al. 2002). The probe intensities were corrected for 

background and gene expression values were calculated by using 

Probe Logarithmic Intensity Error (PLIER) estimation method 

(Seo & Hoffman, 2006). All statistical analyses were invoked 

through the affy package (Gautier et al. 2004) of R scripts (Dudoit 

et al. 2003). In order to conduct an initial characterization and 

quality assessment of all microarray data sets, we applied Principal 

Component Analysis (PCA) based on Singular Value Decomposi-

tion (SVD) to visualize and detect global variation of gene expres-

sion data. Statistical analysis with multiple testing corrections 

(Benjamin-Hogberg method) by one-way ANOVA test to the four 

different carbon sources dataset (i.e. glucose, maltose, glycerol, 

and xylose) was applied to determine significantly different gene 

expressions in A. oryzae or A. niger. A cut-off value of adjusted p-

value < 0.075 was considered to ensure identification of statistical-

ly significant mRNA levels for both Aspergillus species.  

 

Clustering analysis  

Consensus clustering algorithm was used (Grotkjaer et al. 2006) in 

order to identify similar expression patterns among 4 different 

carbon sources as mentioned above. The algorithm was imple-

mented in the MATLAB toolbox called ClusterLustre. In data 

preprocessing process, Pearson’s correlation was used for similari-

ty measurement of average expression values from three biological 

replicates in each carbon source. This allowed us to cluster gene 

expression of A. oryzae and A. niger, simultaneously. Then cluster-

ing was performed by a K-means algorithm. 

 

Evaluation of function and metabolic pathway enrichment 

The functional categories of gene ontology (GO) were retrieved 

from the Joint Genome Institute (JGI) database for A. niger and 

Uniprot protein database for A. oryzae. The reporter algorithm was 

firstly employed to uncover the important GO terms across condi-

tions by integration of GO with significance values of the tran-

scriptome data. The results of significant reporter GO (p-value < 

0.05) were found in Supplementary file 2. We also evaluated 

whether there was over-representation of genes associated with a 

metabolic pathway within a cluster of genes by using the genome-

scale metabolic models iWV1314 (Vongsangnak et al. 2008) and 

iMA871 (Andersen et al. 2008a) for A.oryzae and A. niger respec-

tively. These enrichment evaluations were performed using stan-

dard hypergeometric tests. We assessed significant categories us-

ing a p-value <0.05. 

 

Detection of DNA regulatory motif and transcription factor 

DNA regulatory motifs were identified by using R 2.9.0 with the 

cosmo package (Bembom et al. 2007). A background Markov 

model was pre-computed by using the intergenic regions from the 

Aspergillus sequences by following the previous work (Andersen 

et al. 2008b). The two-component-mixture (TCM) model approach 

was employed to search for the most over-represented motif in 

each cluster of gene expression using a thousand base-pairs of up-

stream sequences of the relevant genes of both species simultane-

ously. The up-stream sequences of A. oryzae and A. niger co-

expressed genes were extracted from the Broad Institute database 

(http://www.broad.mit.edu/annotation/genome/aspergillus 

_group/MultiDownloads.html). To obtain a biological meaning 

from the motif identification results, the obtained over-represented 

motifs were queried against known or predicted Aspergillus con-

sensus motifs or other fungal functional consensus sequences from 

public databases or the literature to identify potential associated 

transcription factors.  

 

Conserved domain architecture and phylogeny analysis  

of FarA and FarB proteins in aspergilli 

To identify conservation of the proteins FarA and FarB in asper-

gilli, we performed comparative sequence analysis of these pro-

teins. Initially, the known amino acid sequences of FarA and FarB 

of A. nidulans original Glasgow strain (Hynes et al. 2006) were 

extracted from GenBank database (http://www.ncbi.nlm.nih.gov/) 

with accession numbers ABD51992.1 and ABD51993.1, respec-

tively. The complete set of the two amino acid sequences of A. 

nidulans original Glasgow strain was used as query for searching 

against the amino acid sequences of 10 different sequenced Asper-

gillus genomes by using BLASTP (Altschul et al. 1990). The se-

quenced species included were: A. oryzae RIB40 (Machida et al. 

2005), A. niger CBS 513.88 (Pel et al. 2007), A. niger ATCC 1015 

(version 3.0) (http://genome.jgipsf.org/Aspni5/Aspni5.home.html), 

A. nidulans FGSC A4 (version 4) (Galagan et al. 2005; Wortman 

et al. 2009), Aspergillus fumigatus Af293 (Nierman et al. 2006), A. 

fumigatus A1163 (Fedorova et al. 2008), Aspergillus flavus NRRL 

3357 (Payne et al. 2006), Aspergillus terreus NIH2624 

(www.broad.mit.edu/annotation/fungi/aspergillus_terreus), Asper-

gillus clavatus NRRL 1 (Fedorova et al. 2008) and Aspergillus 

fischeri NRRL 181 (Fedorova et al. 2008). An estimated expecta-

tion value cut-off of less than 1E-100, more than 40% identity, and 

more than 200 amino acids of alignment length was set to assess 

statistical significance for identification of orthologous genes. 

The evolution of Far proteins of the aspergilli was inferred using 

the UPGMA method (Sneath & Sokal, 1973). The percentage of 

replicate trees in which the associated taxa clustered together in the 

bootstrap test (50000 replicates) (Felsenstein, 1985). The tree was 

drawn to scale, with branch lengths in the same units as those of 

the evolutionary distances used to infer the phylogenetic tree. The 

evolutionary distances were computed using the Poisson correction 

method (Zuckerkandl & Pauling, 1965) and were in the units of the 

number of amino acid substitutions per site. All positions contain-

ing gaps and missing data were eliminated from the dataset. Phy-

logeny analyses were conducted in software MEGA4 (Tamura et 

al. 2007). In order to identify conserved protein domain structure 

for FarA and FarB, we applied conserved domain database (CDD) 

containing domain models imported from a number of reliable 

databases (Pfam, SMART, COG, PRK, TIGRFAM) 

(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) for domain 

analyses.  

 

 

RESULTS  
 

Comparative analysis of co-evolved genes in A. oryzae and A. 

niger  

As a basis for our cross-species comparative investigation at the 

genome level of A. oryzae and A. niger, genes having orthologues 

in the two species were identified by using a BLASTP-based com-

parison (See METHODS). Using this approach 5,928 conserved 

genes (1:1 orthologues) were found (See Supplementary file 1) and 

this gene-set was used to identify transcriptional co-expression 

described in the following. 
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Identification of transcriptional co-expression 

Quality evaluation of multiple microarray data sets 

In our analysis, we were using biological triplicate transcriptome 

data for A. niger and A. oryzae grown on glucose, xylose, maltose 

and glycerol, all data published by our group earlier (Andersen et 

al. 2008b; Salazar et al. 2009; Vongsangnak et al. 2009). As these 

data were generated as part of different studies, we first checked 

the quality of the data, in particularly with respect to whether the 

three replicated experiments on the four different carbon sources 

for the two species grouped together. For this we performed Singu-

lar Value Decomposition (SVD)-based Principle Component 

Analysis (PCA) (See METHODS). The results are shown in Figure 

1. It is seen that there is a high reproducibility of transcriptome 

data sets from the independent biological replicates and they are 

also well-separated with respect to the different conditions for each 

of the two species. The data set can therefore be confidently used 

for further analysis.  

 
Statistical transcriptome data analysis 

All twelve data sets from the four different carbon sources of A. 

oryzae or A. niger, were used for performing a one-way Analysis 

Of VAriance (ANOVA) using normalized transcriptome data from 

all the replicated experiments. This allowed capturing the genes 

with the largest variance response across the different carbon 

sources leading to identification of 2,115 and 4,957 significantly 

differentially expressed genes for A. oryzae and A. niger, respec-

tively.  
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Figure 1 PCA analysis by pseudo-three dimensions plot of the first 

three eigen vectors from SVD for quality assessment of all three 

replicated transcriptome data on four different carbon sources; 

GLU: Glucose, GLY: Glycerol, MAL: Maltose, XYL: Xylose.  (A) 

A. oryzae data (B) A. niger data 

A list of these significant genes is presented in Supplementary file 

3. The significantly regulated genes in both species were cross 

compared with the list of the 5,928 conserved genes for the two 

species. This resulted in the identification of 687 significantly 

regulated genes in each species that are orthologues between the 

two species (see Figure 2). All significant values were integrated 

into the GO network and the reporter algorithm was used to iden-

tify the important GOs across carbon sources for both A. oryzae 

and A. niger (See Supplementary file 2).   

 
Gene clustering 

The statistical significant genes of the two species, which were 

identified from the one-way ANOVA analysis as reported above, 

were clustered according to their similar gene expression patterns 

across the four different carbon sources. Using a consensus cluster-

ing method (Grotkjaer et al. 2006), six patterns of environmental 

response for both aspegilli were achieved as shown in Table 1, 

with the details of genes in each cluster reported in Supplementary 

file 4. Evaluation of metabolic pathway enrichment in all six clus-

ters is presented in Table 1. Commonly, genes with highly corre-

lated expression profiles are likely to have related functions and 

possible even common transcriptional regulation if it is based on 

evolutionary sequence conservation. We therefore combined the 

analysis of co-evolved genes of A. oryzae and A. niger as described 

in the previous section with the occurrence of co-expression pat-

tern to underline core conserved cellular processes in both geno-

type and expression. As shown in Table 1, interestingly, there are 

only two clusters, named cluster 1 and cluster 2 that have a signifi-

cant number of genes with occurrence of co-expressions and con-

served orthologues. Following both criteria, 238*2 genes in cluster 

1 and 23*2 genes in cluster 2, were identified. 

 

37.2 Mb

34.9 Mb

5,928 orthologue genes between two species 

A. niger genome

A. oryzae genome

5,928 homologue

genes
5,928 homologue

genes

687 4,2701,428

A. oryzae A. niger

ab b’

c c’

9,924 6,165

 
Figure 2 Illustration of the steps of the data integration approach 

applied. (A) Comparative genomics of A. oryzae and A. niger 

where the genome sequences of both species were compared. (B) 

Integration of genomics and transcriptomics analysis resulted in 

the identification of significantly regulated genes with conserved 

sequences. Venn diagram inner area, a, denotes the number of 

differentially expressed and conserved genes present in both spe-

cies.  b and b’ corresponds to the number of genes differentially 

expressed in either A. oryzae or A. niger, respectively. c and c’ 

corresponds to the number of genes present in each Aspergillus 

specie, some of them conserved, but not differentially expressed, 

a+b+c represents the total number of genes present in the genome 

of A. oryzae; a+b’+c’ represents the total number of genes present 

in the genome of A. niger. 

A A A 
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Table 1 Gene expression profiles and cluster patterns of A. oryzae and A. niger  

  

Gene expression profiles Cluster patterns* 

Number of co-expressed

genes in cluster

Over-represented

metabolic pathway

1. Glucose
2. Glycerol

3. Maltose

4. Xylose

1. Glucose

2. Glycerol

3. Maltose

4. Xylose

1. Glucose
2. Glycerol

3. Maltose

4. Xylose

1. Glucose

2. Glycerol

3. Maltose

4. Xylose

1. Glucose
2. Glycerol

3. Maltose

4. Xylose

1. Glucose

2. Glycerol

3. Maltose

4. Xylose

Cluster 2

Cluster 4

Cluster 5

Cluster 6

Total gene number: 777 (238)#

A. oryzae : 290 genes

A. niger : 487 genes

Total gene number: 172 (23)#

A. oryzae : 120 genes

A. niger : 52 genes

Glycerol metabolism

Glycolysis and gluconeogenesis

Propanoate and butanoate metabolism

Polysaccharide metabolism

Valine/leucine/isoleucine metabolism

Phenylalanine/tyrosine/tryptophan

biosynthesis

Total gene number: 152 (2)#

A. oryzae : 138 genes

A. niger : 14 genes

Arabinose and xylose metabolism

Pentose phosphate pathway

Polysaccharide metabolism

Total gene number: 160 (7)#

A. oryzae : 100 genes

A. niger : 60 genes

Total gene number: 30 (1)#

A. oryzae : 7 genes

A. niger : 23 genes

Total gene number: 83 (14)#

A. oryzae : 32 genes

A. niger : 51 genes

Polysaccharide metabolism

Pyruvate metabolism

Phenylalanine/tyrosine/tryptophan

biosynthesis

Polysaccharide metabolism

Carbohydrates transport

Other compounds transport

ND

Cluster 3

Cluster 1

 
*Cluster patterns: The x axis represents the four different carbon sources investigated: 1 - Glucose; 2 - Glycerol, 3 - Maltose; 4 - Xylose; 

the y axis represents normalized gene expression intensities.  
#Number of orthologous genes across two aspergilli 

ND: Not Detectable
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Identification of core cellular processes of co-expression and 

co-evolution for cross-species of the aspergilli 

As mentioned above, there are many genes in cluster 1 and cluster 

2 that are orthologues and co-expressed in the two fungi. Consider-

ing cluster 1, it is clear that genes were up-regulated in response to 

growth on glycerol, which is also found by the identification of 

genes associated with the metabolic pathway of glycerol metabo-

lism.  The cluster contains a lot of co-evolved and co-expressed 

genes that has been annotated with similar functions, i.e. genes 

encoding enzymes involved in fatty acid catabolism by the beta-

oxidation pathway, fatty acid transport (e.g. mitochondria car-

nitine-acylcarnitine carrier protein and peroxisomal long-chain 

acyl-CoA transporter), the glyoxylate bypass, peroxisomal bio-

genesis and function. These were also found in reporter GO, such 

as peroxisome (GO:0005777), glyoxylate cycle (GO:0006097), 

lipid metabolic process (GO:0006629), and glycerol metabolic 

process (GO:0006071) (See Supplementary file 2).  The results 

indicates that there is a co-regulation of metabolic pathways in-

volved in glycerol and fatty acid catabolism, probably due to the 

co-existence of these compounds as triacylglycerides and phos-

pholipids in nature. In fungi, the beta-oxidation pathway has been 

studied for localization by Shen et al. (Shen & Burger, 2009), 

based on a large scale in silico screening of localization prediction 

for all relevant enzymes in more than 50 fungal species, the results 

showed this pathway mainly take place in the mitochondria and the 

peroxisome. 

 

To evaluate whether the two aspergilli contains co-evolved path-

ways, we mapped the 238 conserved co-expressed genes identified 

in cluster 1 onto the genome-scale metabolic networks of A. oryzae 

(Vongsangnak et al. 2008) and A. niger (Andersen et al. 2008a). 

Once gene-metabolic pathway mapping were performed, the re-

sults showed that conserved co-expressed genes are involved in 

fatty acid catabolism by beta-oxidation. Besides, we also found 

enzymes/protein functions involved in the glyoxylate bypass and 

perixisomal protein functions (peroxins) to be conserved. The 

common pathways and core protein functions for the two Aspergil-

lus species are illustrated in Figure 3. 

 

For the genes in cluster 2, the pattern indicates up-regulation of 

genes in response to growth on xylose, and not surprisingly it is 

found that many of these genes are associated with the arabinose 

and xylose metabolism pathway (Table 1) and reporter GO terms 

like xylan catabolic process (GO:0045493), transaldolase activity 

(GO:0004801), and D-xylulose reductase activity (GO:0046526). 

We also performed mapping of the 23 conserved genes onto the 

metabolic networks. As expected, we found co-evolved pathways 

which are mainly involved in pentose metabolism, especially the 

xylose degradation pathway, and nucleotide sugar metabolism (See 

Supplementary file 5). This result showed good agreement with 

our previous dedicated study of the conserved response in three 

Aspergillus species to growth on xylose (Andersen et al. 2008b).  

 
Analysis of DNA regulatory motif and transcription factor 

underlying co-expression 

Genes with similar expression profiles will often have their pro-

moter regions bound by common transcription factors at specific 

motifs and potentially regulated through common regulatory 

mechanisms. By promoter sequence analysis, we sought potential 

cis-regulatory motifs in the upstream DNA sequences and further 

searched for the corresponding transcription factors that underlie 

the transcriptional co-expression patterns. The 1,000 base pairs 

(bp) of the upstream regions from the start codon of relevant genes 

in each cluster were analyzed to find the most over-represented 

common motif (See METHODS for details). For example, for the 

genes belonging to cluster 1, a 1 kb upstream sequence from the 

start codon was scanned to identify an over-represented pattern. 

This was done for all the genes from the A. oryzae genome (290 

genes) and A. niger genome (487 genes). Hereby we identified the 

motif, “CCTCGG” (reverse complement, CCGAGG) for this clus-

ter. Several other common motifs of other gene in the other co-

expression clusters were also found and the corresponding logo 

plots of all detected motifs are presented in Table 2. 

 

In order to analyze a transcription factor that potentially bind to the 

identified DNA motifs, we compared the motifs with known or 

predicted Aspergillus consensus motifs from public databases or 

the literature. We found that four out of six of the over-represented 

motifs are highly conserved to fungal species which allowed for 

identification of putative transcription factors as summarized in 

Table 2. The identified motifs were consistent with known binding 

site of known transcription factor in aspergilli, such as FarA 

(Hynes et al. 2006), FarB (Hynes et al. 2006), XlnR (Andersen et 

al. 2008b), CreA (Chamalaun-Hussey, 1996) and Adr1 (Salazar et 

al. 2009).  

As described above, the core cellular processes with co-evolution 

and co-regulation found in cluster 1, are likely regulated by the 

FarA and the FarB proteins that can potential bind to the over-

represented motif pattern “CCTCGG”. There are few studies on 

these proteins that are existing in both the genome of A. oryzae and 

A. niger. However, a number of studies have been reported that the 

Far protein family governs transcriptional activators controlling the 

utilization of fatty acids in several fungi (Hynes et al. 2006). An 

elegant  study presented by Hynes et al. (Hynes et al. 2006), 

showed that these transcription proteins FarA and FarB can bind to 

DNA sequences at 5′ region of a large number of genes involved in 

fatty acids catabolism related processes in A. nidulans. Following 

their results, they concluded that FarA and FarB mainly induce 

genes via binding to the 6-bp core sequence “CCTCGG” in the 5’ 

regions. They also found that genes involved in catabolism of fatty 

acids have a high enrichment of the core motif on their promoters. 

From their conclusion, we further performed our analysis of occur-

rence of “CCTCGG” sequence in the upstream regions of core 

genes that have transcriptional co-expression and co-evolution in 

cluster 1, and which have cellular processes related to those re-

ported by Hynes and coworkers (Hynes et al. 2006). The results 

clearly showed that this pattern was also enriched in genes in-

volved in fatty acid catabolism, glyoxylate bypass and peroxisome 

biogenesis (See Figure 4). Based on this, we postulate that the core 

cellular processes are all conserved at the genetic, transcriptional 

and regulatory level in A. oryzae and A. niger.   

  

 

Table 2 List of identified putative DNA regulatory motifs and 

transcription factors 

 

Features Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

DNA regulatory motif

Potential transcription

factor
FarA

FarB

XlnR CreA Adr1 Unknown Unknown
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Fatty acid catabolism via beta-

oxidation
Gene name

Carnitine O-acyltransferase (EC: 

2.3.1.7 )

AO090026000404

JGI120926

Fatty-acyl-CoA oxidase

(EC: 1.3.3.6)

AO090005000479

JGI181397

Acyl-CoA dehydrogenases

(EC: 1.3.99.3)

AO090009000596

JGI128861

Enoyl-CoA hydratase/isomerase

(EC: 4.2.1.17)

AO090701000128

JGI48646

3-hydroxyacyl-CoA dehydrogenase 

(EC: 1.1.1.35)

AO090026000443

JGI175251

Enoyl-CoA isomerase

(EC: 5.3.3.8)

AO090701000555

JGI50197

Peroxisomal 3-ketoacyl-coA 

thiolase (Kat1) (EC: 2.3.1.16)

AO090005000090

JGI50823

AO090003001121

JGI55007

Long chain Fatty acyl-CoA

synthetase (EC: 6.2.1.3)

AO090102000633

JGI188673

Peroxisomal 3-ketoacyl-CoA-

thiolase P-44/SCP2 (EC: 2.3.1.16)

AO090023000951

JGI54651

3-hydroxyacyl-CoA dehydrogenase

(EC: 1.1.1.157)

AO090206000053

JGI210871

Acetyl-CoA acetyltransferase

(EC: 2.3.1.9)

AO090103000406

JGI44808

Peroxisomal long-chain acyl-CoA

transporter

AO090012000602

JGI177847

Mitochondria Carnitine-

acylcarnitine carrier protein

AO090103000383

JGI44373

Peroxisomal multifunctional beta-

oxidation protein and related

enzymes (EC: 4.2.1.17, EC: 5.3.3.8, 

EC: 5.1.2.3, EC: 1.1.1.35)

AO090001000431

JGI54207

AO090011000326

JGI201398

Glyoxylate bypass

Isocitrate lyase

(EC: 4.1.3.1)

AO090009000219

JGI196237

NAD-dependent malate

dehydrogenase (EC: 1.1.1.37)

AO090701000013

JGI183145

Fumarate reductase, flavoprotein

subunit (EC: 1.3.99.1)

AO090005000592

JGI205005

MethylIsocitrate lyase

(EC: 4.1.3.30)

AO090120000179

JGI42171

Methylcitrate synthase

(EC: 2.3.3.5)

AO090009000568

JGI48684

2-methylcitrate dehydratase

(EC: 4.2.1.79)

AO090701000175

JGI53423

Perixisomal biogenesis and functions

AAA+-type ATPase Pex1 

(peroxin-1)

AO090011000621

JGI48950

Peroxisomal membrane protein 

Pex16 (peroxin-16)

AO090012001013

JGI48217

Peroxisome assembly protein 

Pex10 (peroxin-10)

AO090005000111

JGI50837

Peroxisomal biogenesis protein 

Pex11 (peroxin-11)

AO090003000168

JGI55954

Peroxisomal biogenesis protein 

Pex13 (peroxin-13)

AO090005000629

JGI57403

Peroxisomal membrane anchor 

protein Pex14 (peroxin-14) 

AO090026000338

JGI122824

AO090003000555

JGI183268

Peroxisomal membrane protein 

Pex17 (peroxin-17)

AO090011000861

JGI211653

Peroxisomal membrane protein 

Pex8 (peroxin-8)

AO090011000861

JGI211653

CCTCGG

Figure 4 Positions of FarA/FarB binding sites (CCTCGG) motif in the 5’regions of core genes involved in fatty acid catabolism, glyoxy-

late bypass and peroxisome biogenesis that have transcriptional co-expression in the two species.  

For individual gene name, the ORF is prefixed by “AO” for A. oryzae RIB40, “JGI” for A. niger ATCC1015. 
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Conserved FarA and FarB transcription factors in aspergilli 

 

Both FarA and FarB proteins are classified as Zn(II)2Cys6 tran-

scription factors.  FarA is required for induction by both short- and 

long-chain fatty acids, while FarB is likely required only for short-

chain fatty acid induction in A. nidulans (Hynes et al. 2006).  As 

shown in Figure 5, we found highly conserved protein sequences 

of FarA and FarB across 8 species, A. nidulans (two strains), A. 

oryzae and A. niger (two strains), A. flavus, A. clavatus, A. terreus, 

A. fischeri and A. fumigatus (two strains). As shown in the phylo-

genic tree, considering known conserved domains analysis, the 

FarA protein contains both of Zn2-Cys6 binuclear cluster domain 

(PF00172) and a fungal specific transcription factors domain 

(PF04082) that are conserved for all 8 species. For the FarB pro-

tein, we could not identify a conserved domain of the Zn2-Cys6 

binuclear cluster (PF00172) in the A. niger strain ATCC 1015 and 

in A. terreus, while we found this domain in the other aspergilli. 

According to the conserved domain analysis, both proteins FarA 

and FarB have the similar architecture of the two conserved do-

mains, and from these result, we can conclude that these transcrip-

tion factors are evolutionary conserved among aspergilli. We fur-

ther evaluated whether the FarA and FarB proteins are conserved 

among other fungi, and here it is found to be highly homologue to 

genes identified in Penicillium spp, Fusarium spp, Neurospora 

spp, Sclerotinia spp, Ajellomyces spp, Paracoccidioides spp, Coc-

cidioides spp, Talaromyces spp and Microsporum spp (See more 

information in Supplementary file 6), whereas there is no highly 

conservation to yeast genes. 

A. oryzae RIB40

A. flavus NRRL3357

A. clavatus NRRL1

A. niger CBS 513.88

A. fischeri NRRL181

A. fumigatus A1163 

A. fumigatus Af293

A. nidulans Glasgow

A. nidulans FGSC A4

A. niger ATCC 1015

A. terreus NIH2624

A. nidulans Glasgow

A. nidulans FGSC A4

A. clavatus NRRL1

A. fischeri NRRL181

A. fumigatus A1163 

A. fumigatus Af293

A. terreus NIH2624

F

a

r

A

F

a

r

BA. niger CBS 513.88

A. niger ATCC 1015

A. oryzae RIB40

A. flavus NRRL3357

Amino acid length

Conserved DomainsPhylogeny

PF00172 PF04082

Figure 5 Phylogeny and conserved domains analysis of FarA and FarB proteins in 8 Aspergillus species 
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DISCUSSION 
 

Fatty acid catabolism 

Fatty acid catabolism occurs via the beta-oxidation pathway, in 

which short-chain and long-chain fatty acids are first activated to 

the corresponding acyl coenzyme A (acyl-CoA) and then oxidized 

by repeating enzymatic steps to release acetyl-CoA and acyl-CoA 

shortened by two carbons, which can go through further cycles of 

beta-oxidation. The acetyl-CoA released is converted to C4 com-

pounds via the glyoxylate bypass, comprising the enzymes isocit-

rate lyase (EC: 4.1.3.1) and malate synthase (EC: 2.3.3.9). With 

cross-species analysis of transcriptional co-expression patterns, we 

found that isocitrate lyase is a common enzyme between A. oryzae 

and A. niger. On the contrary, malate synthase did not have any co-

expression, even though it is conserved at the genomics level, i.e. 

we found orthologus genes of A. oryzae (AO090009000557) and 

of A. niger (JGI48680). However, at the transcriptional level the A. 

oryzae gene expression show a highly significant change with 

glycerol whereas the A. niger did not show any significant change. 

Considering motif identification, we also searched for the 

‘CCTCGG’ binding site in both of the orthologous genes. The 

results indicated a single motif exists in the 5’ upstream sequences 

of both species as shown in Figure 4. This suggests that the gene-

encoding malate synthase of A. oryzae and A. niger is possibly 

controlled via the same regulator (FarA/FarB), and the fact that 

malate synthase was not found to have a significant changed ex-

pression in A. niger that can be a result of a false negative in the 

high-throughput analysis. We further identified a wide range of the 

enzymes that are also subject to induction by glycerol besides the 

beta-oxidation pathway, i.e. acetyl-carnitine transferase (EC: 

2.3.1.7), long-chain acyl-CoA transporter, acyl-CoA synthetase 

(EC: 6.2.1.3), fatty-acyl-CoA oxidase (EC: 1.3.3.6), enoyl-CoA 

hydratase (EC: 4.2.1.17), 3-hydroxyacyl-CoA dehydrogenase (EC: 

1.1.1.35), and enoyl-CoA isomerase (EC: 5.3.3.8) and carnitine-

acylcarnitine carrier protein. 

 

Peroxisomal biogenesis and peroxin 
A broad range of peroxisomal proteins (peroxins) in cluster 1 have 

been identified as being both co-evolved and co-expressed in the 

two aspergilli.  Peroxin-11 (Pex11p) is normally required for per-

oxisome proliferation (Titorenko & Rachubinski, 2001), and this 

allows the cell to regulate a number of organelles in the cell, which 

may increase the efficiency of certain metabolic routes signifi-

cantly (Kiel & van der Klei, 2009). This peroxin localizes around 

integral protein components of the peroxisomal membrane. Like 

found in A. nidulans, we found that the pex11 gene of A. oryzae 

and A. niger were potentially induced by glycerol. This induction 

depends on the transcription factors FarA and FarB (Hynes et al. 

2006; Kiel & van der Klei, 2009), where a FarA/FarB binding site 

can be identified upstream of pex11 (Figure 4).  In addition, our 

analysis showed the presence in A. oryzae and A. niger of various 

peroxins, such as the receptor docking complex, consisting of the 

peroxins Pex13p, Pex14p and Pex17p. These proteins are involved 

in peroxisomal biogenesis and form a protein complex present at 

the peroxisome membrane. Furthermore, we identified peroxin-10 

(pex10p) that contains the RING-finger motif that is a characteris-

tic element of E3-ubiquitin ligase (Kiel & van der Klei, 2009). 

Another important peroxin found is peroxin-1 (Pex1p), which is 

AAA+-type ATPase associated with a variety of cellular activities. 

In addition we found Pex16p, which is an integral membrane pro-

tein that may play a role in the formation of the peroxisomal mem-

brane (Kiel & van der Klei, 2009). Through this study, we found 

the presence of the Pex gene family in the two Aspergillus’s ge-

nomes and this suggests that the peroxins involved in peroxisome 

biogenesis and proliferation are conserved in these fungi and 

probably induced by glycerol via FarA and FarB proteins, indicat-

ing the importance of peroxisomes in cellular metabolism.  

 

Regulation of transcription factors 

Aspergilli are very versatile in their ability to use diverse carbon 

sources. Not surprisingly, we found several transcription factors 

controlling carbon metabolism from this study. Our finding indi-

cates that the conserved CCTCGG motif from gene cluster 1 is 

present in the upstream region of genes involved in lipid metabo-

lism and peroxisome biogenesis of A. niger and A. oryzae. These 

indicate that regulation of these genes is governed by the FarA and 

FarB transcriptional activators. One may speculate why there is 

regulation of these pathways by glycerol, but this is likely due to 

the fact that fatty acids are generally available as triacylglycerides 

and phospholipids that contain glycerol as the backbone. We also 

found that XlnR is a transcriptional activator that regulates xy-

lanolytic and cellulolytic enzymes (Gielkens et al. 1999; Marui et 

al., 2002a; Marui et al. 2002b; Tamayo et al. 2008; van Peij et al. 

1998a; van Peij et al. 1998b).  We found the conserved 

“GGNTAAA” motif over-represented upstream of genes in cluster 

2, and in particular in the upstream region of genes involved in 

pentose metabolism, the pentose phosphate pathway and nucleo-

tide sugar metabolism of A. niger and A. oryzae (See Supplemen-

tary file 5). We also found creA over-represented as a putative 

transcription factor for genes in cluster 3. CreA is the major media-

tor of carbon catabolite repression (Dowzer & Kelly, 1989; Dow-

zer & Kelly, 1991), its binding was enriched in the genes for utili-

zation of glucose in A. oryzae as also found in metabolic pathway 

enrichment analysis in Table 1. Another transcription factor identi-

fied was Adr1. We observed the conserved TGCGGGG motif to be 

present in the upstream sequence of genes in cluster 4, in particular 

for genes involved in ethanol utilization, lactate metabolism, amino 

acid metabolism and fatty acid metabolism. 

From this study, one can obtain a better understanding of the com-

plex relationships between co-expression of genes. We found that 

FarA and FarB are conserved regulators of aspergilli that govern 

regulation of co-evolved and co-expressed genes related with core 

biological processes. Our work therefore improved functional an-

notation and the reconstruction of gene regulatory networks in 

aspergilli. 
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SUPPLEMENTARY FILES  
Supplementary file 1 

File format: PDF 

Description: List of 5,928 conserved orthologous genes between A. 

oryzae and A. niger (See Table S1.1). 

 

Supplementary file 2 

File format: PDF 

Description: List of reporter GO for A. oryzae (See Table S2.1) 

and A. niger (See Table S2.2) under cut-off (p-value < 0.05). 
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Supplementary file 3 

File format: EXCEL 

Description: List of gene expression values under cut-off from 

one-way ANOVA test from four different carbon sources with 

three biological replicates of A. oryzae (See Table S3.1) and A. 

niger (See Table S3.2).  

 

Supplementary file 4 

File format: PDF 

Description: List of 687 genes distributed into six clusters from 

consensus clustering (See Table S4.1). The genes are sorted ac-

cording to ascending cluster number. 

 

Supplementary file 5 

File format: PDF 

Description: Conserved genes with co-expressions of A. oryzae 

and A.niger from gene cluster 2 are mapped in co-evolved pathway 

(Figure S5.1). Besides, this file also provides the detection of pres-

ence of GGNTAAA motif in the 5’ upstream regions of the rele-

vant genes in the co-evolved pathways (Table S5.1). 

 

Supplementary file 6 

File format: PDF 

Description: This file provides statistical details of comparative 

sequence analysis of FarA (See Table S6.1) and FarB (See Table 

S6.2) proteins between A. nidulans original Glasgow strain (Hynes 

et al. 2006) and different fungi. Statistical values are presented: E-

value and %identity. 
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INTRODUCTION 

Aspergillus oryzae is used for the production of various industrial 

enzymes and it has a very high natural protein secretion capacity, 

which enables high level production of many fungal enzymes that 

find applications in the technical, feed and food industries. In con-

nection with sustainable development of chemicals and biofuel 

productions, raw materials such as starches, celluloses, and hemi-

celluloses are widely used in production of e.g. ethanol and lactic 

acid. In order to degrade starch to glucose, there is a need for effi-

cient enzyme biocatalysts.  A. oryzae seems to be a producing or-

ganism that secretes significant amounts of α-amylases that break 

polysaccharides into sugars which are further fermented by yeast 

and lactic acid bacteria. Therefore a demand for α-amylase produc-

tion is growing at a fast pace. Despite the industrial importance of 

A. oryzae as mentioned, there is relatively little known information 

about its fundamental process of protein production. Such know-

ledge is quite important for optimization of an industrial enzyme 

fermentation processes. For example, information about which 

genes/pathways are key players for high level protein production.  

 

In this study, the aim was to perform integrative data analysis (i.e. 

genomes, transcriptomes, metabolic networks, interactomes and 

fluxes) for diagnosis of industrial enzyme production in fermenta-

tion process. Our integrative approach involves comparative tran-

scriptome analysis of a high-producing strain of α-amylase with a 

reference strain. We compared the A. oryzae transformant strain 

CF1.1 from Novozymes A/S that contains multiple additional gene 

copies of the α-amylase production strain with the wild type strain 

A1560. To identify fundamental metabolic process of protein pro-

duction, we further combined the genome-scale metabolic network 

of A. oryzae (Vongsangnak et al., 2008) with the transcriptome 

data. Moreover, analysis of the global regulatory structure underly-

ing protein synthesis and secretion was also analyzed. We further 

reconstructed a global interaction network of A. oryzae based on 

identification of putative components through comparative genom-

ics and interactomics (e.g. protein-protein interaction) between A. 

oryzae and S. cerevisiae. The reconstructed interaction network 

was used for identification of key proteins and co-regulated mod-

ules in the transcriptional response to high-level protein produc-

tion. Additionally, flux calculation was performed for analysis of 

amino acid consumption for protein production. Here we summar-

ize the integration of these multiple data dimensions for diagnosis 

of the protein production process. We present possible key play-

ers/targets (i.e. genes, enzymes, proteins, metabolites and path-

ways) in response to protein production that may lead us to further 

improve industrial enzyme fermentation processes. 

METHODS 

Strains 
The two strains used were A. oryzae strain A1560 (wild type 

strain) and multiple additional gene copies of the α-amylase pro-

ducing strain CF1.1 (transformant strain), both strains obtained 

from Novozymes (Carlsen & Nielsen, 2001; Pedersen et al., 1999). 

A. oryzae stock culture was maintained on Cove-N-Gly agar at 

4°C. 

 

Medium and inoculum compositions 
For both strains of A. oryzae, spore propagation medium (Cove-N-

Gly): 218 g/L sorbitol, 10 g/L glycerol 99.5%, 2.02 g/L KNO3, 25 

g/L agar and 50 ml/L salt solution. Cove-N-Gly salt solution: 26 

g/L KCl, 26 g/L MgSO4.7H2O, 76 g/L KH2PO4, 50 ml/L trace 

element solution. Cove-N-Gly trace elements solution: 40 mg/L 

Na2B4O7.10H2O, 400 mg/L CuSO4.5H2O, 1200 mg/L Fe-

SO4.7H2O, 700 mg/L MnSO4.H2O, 800 mg/L Na2MoO4.2H2O, 10 

g/L ZnSO4.7H2O. Pre-cultures medium (G2-GLY): 18 g/L yeast 

extract, 24 g/L glycerol (87%), 1 ml/L pluronic PE-6100. Batch 

cultivation medium: 2.4 g/L MgSO4.7H2O, 3.6 g/L K2SO4, 1.2 g/L 

citric acid monohydrate, 2.4 g/L KH2PO4, 3 g/L (NH4)2HPO4, 1.2 

g/L pluronic acid (PE-6100) and 0.6 ml/L trace element solution. 

Trace elements solution: 14.3 g/L ZnSO4.7H2O, 8.5 g/L 

MnSO4.H2O, 13.8 g/L FeSO4.7H2O, 2.5 g/L CuSO4.5H2O, 3 g/L 

citric acid monohydrate as a chelating agent, and 0.5 g/L 

NiCl2.6H2O. Carbon sources used were glucose monohydrate or 

maltose monohydrate (15 g/L). Fermenters were inoculated with 

~60 g of broth of A. oryzae cultured at 30°C for 24 h on G2-GLY 

liquid medium in shake flasks at 250 rpm. The pre-cultures were 

inoculated with 5 ml of spore solution harvested from mycelium 

grown on Cove-N-Gly agar at 34°C for 3–4 days. Spores were 

harvested with Tween 80 0.1%.  

 

Batch cultivations 
Batch cultivations were done in 2 L bioreactors with a working 

volume of 1.2 L. The stirrer speed was kept at 800 rpm during the 

first 4 h and then increased to 1100 rpm. The pH was controlled at 

6 by addition of 10% (v/v) of H3PO4 or 10% (v/v) NH3 solution, 

and the temperature was maintained at 34°C. The aeration flow 

rate was set at 1.2 vvm (volume of gas per volume of liquid per 

minute). Dissolved oxygen tension was initially calibrated at 

100%. The concentrations of oxygen (O2) and carbon dioxide 

(CO2) in the exhaust gas were monitored with a gas analyzer 

(Magnos 4G for O2, Uras 3G for CO2, Hartmann & Braun, Ger-

many). 
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Sampling 
Cell dry weight was determined by filtration. A known volume of 

cell culture was filtered by 70 mm paper filter (Munktell, Glyck-

sBo, Sweden), and then dried at 100°C for 24 h and cooled down 

in a desiccator. The filter with dried cell mass was weighed after-

wards. The culture supernatant was obtained after centrifugation of 

original samples and subsequently frozen at -20°C for sugars and 

extracellular metabolites measurements. For gene expression anal-

ysis, mycelium was harvested at the early-mid exponential phase 

and then cultures were filtered. At this point, the mycelium was 

washed with distilled water. The mycelium was quickly dried by 

squeezing and subsequently frozen in liquid nitrogen. Samples 

were stored at -80°C until RNA extraction. 

 

Sugars and extracellular metabolites measurements 
The concentration of sugars and extracellular metabolites were 

measured by HPLC analysis on an Aminex HPX-87H ion-

exclusion column (BioRad, Hercules, CA) with previous filtration 

by 25 mm GD/X syringe filter, 0.45 µm pore size (Whatman, Inc, 

USA). The column was eluted at 45°C with 5 mM H2SO4 at a flow 

rate of 0.6 ml min-1. Extracellular metabolites were detected with a 

refractive index detector and an UV detector.  

 
Assay of α-amylase activity 
The α-amylase activity was measured by the Fungamyl analysis 

method according to the cobas fara/PNP method: SOP EAL-SM-

0216.02 from Novozymes A/S protocol. The reagents used from 

Roche Diagnostics GmbH, Mannheim kit 11555685. The analysis 

of amylase activity was performed by kinetic assay for 10 minutes 

with OD-measurement every minute at 405 nm in microplate read-

er (i.e. Thermomax, Molecular Devices).  Fungamyl activity was 

calculated by Softmax® Pro Software on the basis of Vmax rate 

(mOD/min) by comparison to a linear fungamyl standard curve. 

The unit of α-amylase activity was expressed in FAU/ml.  

 

Total RNA extraction 
Total RNA was extracted by using the Promega RNAgents Total 

RNA Isolation system, according to the protocol for purification of 

total RNA from fungi. For RNA extraction, ~1 g of frozen myce-

lium was ground to a fine powder under liquid nitrogen using a 

ceramic mortar and pestle. For all samples, the quality of the total 

RNA extracted was determined by using a BioAnalyzer (2100 

BioAnalyzer, Agilent Technologies Inc., Santa Clara, CA, USA) 

and the quantity determined by using a spectrophotometer (Amer-

sham Pharmacia Biotech, GE Healthcare Bio-Sciences AB, Uppsa-

la, Sweden). Total purified RNA was stored at -80°C until further 

microarray processing.  

 

Microarray manufacturing and design 
Affymetrix arrays were used for the analysis of the transcriptome 

of A. oryzae (Affymetrix company, Santa Clara, CA, USA). The 

arrays were packaged in an Affymetrix® GeneChip cartridge (49 

format), and were processed with GeneChip reagents in the Gene-

Chip® Instrument System. The array contains only perfect match 

(PM) probes which correspond to 25-base oligonucleotides perfect 

complementary to the transcript. Of the 13,120 putative genes 

identified in the genome of A. oryzae (Machida et al., 2005; Vong-

sangnak et al., 2008), 12,039 probe sets were used for microarray 

analysis. Each of the probe sets were composed of 11 probes 

(whenever possible) of 25 oligomers (Andersen et al., 2008).   

Biotin-labeled cRNA and microarray processing 
Biotin-labeled cRNA was prepared from ~ 5 µg of total RNA, 

according to the protocol described in the Affymetrix GeneChip 

Expression Analysis Technical Manual (Affymetrix & GeneChip, 

2007). The cRNA was cleaned before fragmentation by using the 

Qiagen RNeasy Mini Kit (protocol for RNA Cleanup), in order to 

guarantee the quality of cRNA samples for further processing. 

Biotin-labeled cRNA was quantified in a spectrophotometer (Am-

ersham Pharmacia Biotech, GE Healthcare Bio-Sciences AB, Upp-

sala, Sweden). Then, 20 µg of cRNA were fragmented following 

manufacturer protocol and ~ 15 µg of fragmented cRNA was hy-

bridized to the Aspergillus Affymetrix chip (Andersen et al., 2008) 

according to the Affymetrix GeneChip Expression Analysis pro-

tocol (Affymetrix & GeneChip, 2007). Arrays were washed and 

stained using a GeneChip Fluidics Station FS-400, and scanned 

on an Agilent GeneArray Scanner.  

 
Microarray data acquisition and analysis 
Affymetrix CEL-data files were preprocessed using bioconductor 

(Gentleman et al., 2004) and R package version 2.9.0 (R Devel-

opment Core Team). Normalization was performed by using the 

qspline algorithm (Workman et al., 2002). Normalized gene ex-

pression data set is presented in Supplementary file 1. The probe 

intensities were corrected for background by using the robust mul-

tiarray average method (Irizarry et al., 2003) by using all the 

probes. Gene expression values were calculated from the probes 

associated with each gene with the medianpolish summary method 

(Irizarry et al., 2003). All statistical preprocessing methods were 

invoked through the affy package (Gautier et al., 2004) and R 

scripts (Dudoit et al., 2003). Statistical analysis was applied to 

determine significantly different gene expressions. The limma 

package (Smyth et al., 2005) was used to perform moderated Stu-

dent’s t tests. Empirical Bayesian statistics were used to moderate 

the standard errors within each gene and Benjamini-Hochberg’s 

method to adjust for multi testing (Benjamini & Hochberg, 1995). 

A cut-off value of adjusted P<0.05 was set to assess statistical 

significance. For pair-wise strains comparison on the individual 

carbon source, moderated Student’s t test was done. To study 

strains background effect (i.e. transformant strain CF1.1 or wild 

type strain A1560) and to avoid influence of carbon source, the list 

of genes with significance under cut-off from individual carbon 

source was overlapped. To study carbon sources effect (i.e. mal-

tose or glucose) on α-amylase production, pairwise carbon sources 

comparison was also performed on the individual strain. 

 

Reporter metabolites and subnetwork analysis 
The reporter metabolites and highly correlated metabolic sub-

network algorithm was applied (Patil & Nielsen, 2005). The pair-

wise comparison analysis was run for A. oryzae, for the transfor-

mant strain CF1.1 versus wild type strain A1560. For this purpose, 

information on the topology of the reconstructed metabolic net-

work of A. oryzae (Vongsangnak et al., 2008) was used in combi-

nation with the adjusted p-values obtained from the Student’s t-test 

analysis. 

 

Pairwise protein sequence comparisons 
The complete set of amino acid sequences of the predicted genes 

from A. oryzae (Machida et al., 2005) was used as a sequence da-

tabase and S. cerevisiae was used as a sequence query by applying 

BLASTP for sequence comparisons (Altschul et al., 1990). An 

estimated expectation value cut-off of 1E-10, alignment length of 
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100 amino acids (aa) and percentage of identity of 25 (%) was set 

to assess statistical significance. The result is a list of orthologous 

genes (see Supplementary file 2) and represents the scaffold for the 

reconstruction of protein-protein interaction network.  

 

Reconstruction of protein-protein interaction network 
The reconstruction of protein-protein interaction graph was per-

formed based on the following assumption: if there is experimental 

evidence that proteins a1 and b1 in an organism X, interact and 

proteins a2 and b2 of another organism Y are the best homologous 

to a1 and b1, respectively, thus proteins a2 and b2 may interact 

(Jonsson et al., 2006). In this study, S. cerevisiae was selected as 

reference organism (organism X) since it is closely related fungal 

species to A. oryzae (organism Y) and a large data set of protein-

protein interactions is available. We retrieved data sets of S. cere-

visiae (version 2.0.51) from BIOGRID database 

(http://www.thebiogrid.org/). 

 

Identification of a key protein 
Reporter features algorithm (Oliveira et al., 2008) was applied to 

identify a key protein. Reporter features is a hypothesis-driven 

method for analysis of transcriptome data. It combines the topol-

ogy of biological network with the different gene expression data 

and allows the identification of key biological feature (i.e. key 

protein) around which transcriptional changes are significantly 

concentrated. The applied reporter feature algorithm was based on 

reconstructed protein-protein interaction graph of A. oryzae ob-

tained from previous step. 

 

In order to use the algorithm, a pairwise t-test analysis between 

two strains was performed to obtain statistical values.  Then, gene 

expression data sets were combined with the reconstructed graph 

to identify key proteins that are significantly affected in response 

to change of strain backgrounds. Gene expression, in the form of 

P-value and Z-score was mapped onto the “gene nodes” of the 

graph. The final score of each key protein can be calculated based 

on the score of its neighbors “gene nodes”. The reporter proteins 

showed a Z-score and number of neighbor genes (n) under the cut-

off (Oliveira et al., 2008) that were applied for biologically mea-

ningful study. In our case, the selected cut-offs of Z-scores were 

more than 1, and number of neighbor genes (n) were more than 25. 

 

Flux calculations 
The specific consumption rate of each of the 20 amino acids was 

calculated for the two strains in terms of flux (as mmol gDW-1h-1). 

To calculate this flux, stoichiometry of each amino acid consump-

tion for synthesis of total protein for biomass (Vongsangnak et al., 

2008)  and stoichiometry of each amino acid consumption for syn-

thesis of α-amylase (Pedersen et al., 1999), specific growth rate 

and specific rate of product formation (α-amylase) were used for 

calculation.  

 

 
 
 
 
 
 
 
 
 

Result 
Growth physiology 
 

The growth physiology of the two A. oryzae strains was examined 

in well-controlled bioreactors. Batch cultures were carried out 

using the same defined salt medium with glucose or maltose as the 

carbon source. Three biological replicates cultivations were per-

formed for each strain. The results illustrated in Figure 1 (panel A) 

present profiles of the growth and α-amylase enzyme activities of 

the two strains (wild type strain A1560 and transformant strain 

CF1.1) for each carbon source (glucose or maltose). Panel B sum-

marizes the physiology data for the batch cultures. Comparison of 

the fermentation profiles of the two strains showed that the wild 

type strain A1560 has a slightly higher specific growth rate than 

the transformant strain CF1.1, but the maximum activities of ex-

tracellular α-amylase enzyme produced were higher for the trans-

formant strain CF1.1 than for the wild type strain A1560. For 

growth on glucose the increase was approximately 2.3-fold higher 

for transformant strain CF1.1, whereas for the maltose medium the 

enzyme production was approximately 4-fold higher for the trans-

formant strain CF1.1 than for the wild type strain A1560 (See Fig-

ure 1). These results raised an important question: what are the key 

players that cause increased level of protein production of trans-

formant strain CF1.1 (compared to wild type strain A1560)? To 

find out the key players/targets and their functional role, compara-

tive transcriptome analysis was performed as described in the fol-

lowing section. 

   

Comparative transcriptome analysis  
To identify the key players for α-amylase production in A. oryzae, 

the genome-wide gene expression data obtained from wild type 

A1560 and transformant CF1.1 cultivations were pair-wise com-

pared for each of the two carbon sources (either glucose or mal-

tose). To detect transcriptional changes in response to the strain 

background, Student’s t-test statistics was used to identify signifi-

cantly different gene expression levels with a p-value cut-off of 

0.05. To avoid influence of carbon source, the list of conserved 

genes that respond to strain background for each carbon source 

was overlapped. Figure 2 shows 2,560 overlapped genes that were 

significantly differentially expressed in the two A. oryzae strains. 

Among these 2,560 genes, 1,916 (~75%) were up-regulated genes 

in the transformant strain CF1.1. List of these genes is presented in 

Supplementary file 3.  

Based on gene classification of A. oryzae from the DOGAN data-

base, we found that 474 out of the 2,560 genes were involved in 

the functional category of protein synthesis and secretion. These 

results are highly reasonable as α-amylase is a protein and there-

fore not surprisingly the process of synthesis of protein is signifi-

cantly changed in the transformant strain CF1.1. In addition, we 

also classified the protein synthesis into sub-functional categories 

(See Supplementary file 3). Hereby we found many genes involved 

in RNA processing and translation as well as post-translation 

modification and secretion processes. A number of genes with 

relative difference in gene expressions between the transformant 

CF1.1 and the wild type A1560 were also found (e.g genes encod-

ing protein functions involved in energy metabolism, amino acid 

metabolism, DNA processing and transcription, and cellular devel-

opment process). The results are shown in Figure 2. For list of 

genes with general functions or unknown function, see in Supple-

mentary file 3. 
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Figure 1 Fermentation profiles of A. oryzae  

(A) Growth and enzyme activity profiles of two strains (i.e. wild type strain A1560 and transformant strain CF1.1) during growth on glu-

cose and maltose as carbon sources.   

(B) Overview of time for sampling for transcriptome analysis, biomass concentration at the sampling time, the maximum specific growth 

rate, and the maximum enzyme activity for the two strains grown on the two different carbon sources. For all values, average values and 

standard deviations for the three replicates are shown. 
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Figure 2 Bar graph represents significantly differentially expressed genes between transformant strain (CF1.1) and wild type strain 

(A1560), distributed into different functional categories 

 

Key metabolites and metabolic subnetwork analysis in re-

sponse to protein production 

The reporter metabolites and subnetworks algorithm was applied to 

identify key metabolites involved in protein production and to 

search for highly correlated metabolic sub-networks for the pair-

wise comparison (Patil & Nielsen, 2005). This analysis relies on 

the reconstructed genome-scale metabolic network of A. oryzae 

(Vongsangnak et al., 2008). Here, we demonstrated how a meta-

bolic network can be used to msap global regulatory responses for 

protein production in A. oryzae. The top 25 high-scoring key meta-

bolites for A. oryzae are listed in Table 1. The fact that tRNA (both 

cytosol and mitochondria tRNA) was identified as a key metabo-

lites is biologically reasonable, as charged tRNAs are precursors 

for protein synthesis. Of the 25 metabolites, 20 key metabolites are 

involved in purine and pyrimidine nucleotide biosynthesis, namely 

5-phospho-α-ribosyl-1-pyrophosphate (PRPP), mitochondrial and 

cytosol pyrophosphate (PPI), inosine monophosphate (IMP), xan-

thosine monophosphate (XMP), guanosine monophosphate 

(GMP), mitochondrial and cytosol adenosine monophosphate 

(AMP), adenosine triphosphate (ATP), deoxy-uridine monophos-

phate (dUMP), deoxy-guanosine monophosphate (dGMP), gua-

nine, adenine, cytosine, ADP-ribose, 3’,5’-cyclic deoxy-adenosine  

monophosphate (cdAMP), 3’,5’-cyclic inosine monophosphate 
(cIMP), 3’,5’-cyclic adenosine monophosphate (cAMP), 3’,5’-

cyclic guanosine monophosphate (cGMP), and 3’,5’-cyclic cyto-

sine monophosphate (cCMP). The results are in agreement with 

classical molecular biology, where formation of ribonucleic acid 

(RNA) and deoxyribonucleic acid (DNA) is very important in 

protein production. Besides, we found that ferricytochrome C and 

ferrocytochrome C are involved in energy metabolism and also 

nicotinate-D-ribonucleotide is involved in nicotinate and nicotina-

mide metabolism. In addition to key metabolites, we also identified 

key enzymes or transporters in response to increased protein pro-

duction. We performed metabolic sub-network analysis using the 

whole reaction set from the reconstructed metabolic network of A. 

oryzae (Vongsangnak et al., 2008).  Figure 3 captures key genes 

encoding enzymes in nucleotide metabolism (purine and pyrimi-

dine biosynthesis) and key genes encoding enzymes involved in 

amino acid metabolism that are significantly changed in the meta-

bolic sub-networks identified from pair-wise strains comparison in 

A. oryzae (wild type strain A1560 vs. transformant strain CF1.1).  

Table 1 Reporter metabolites analysis  

 
Reporter metabolite analysis identifies metabolites around which 

the most significant transcriptional changes occur. The algorithm 

uses the pairwise t-test analysis referring to strain background 

effect as an input. The P-value gives a measure of significance and 

all results with P< 0.03 are reported. 
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Identification of key proteins in respond to protein pro-

duction 
In order to find key proteins regulating the global transcriptional 

response to the increased protein production level, the reporter 

features algorithm (Oliveira et al., 2008) was applied. The reporter 

protein identification is based on reconstructed networks covering 

each protein-protein interaction combined with gene expression 

data. In order to apply the algorithm, we first needed to reconstruct 

a global protein-protein interaction network of A. oryzae (See Me-

thods). Each protein pairs from yeast S. cerevisiae BIOGRID data-

base was used as a query interaction and searched against A. ory-

zae genes obtained from pairwise protein sequences comparisons 

(See Methods). Considering only 1:1 orthologous genes of A. ory-

zae and S. cerevisiae, we identified 3,514 genes. We searched 

140,849 protein pairs of S. cerevisiae used as a query interaction 

database against the 3,514 genes of A. oryzae to reconstruct a puta-

tive protein-protein interaction network (hypothesis presented by 

Jonsson et al and as described in Methods. The reconstructed inte-

raction network of A. oryzae contains 2,704 individual proteins 

with 48,483 putative interactions of protein pairs (See Supplemen-

tary file 4). In order to identify key proteins, the gene expression 

data set from comparative transcriptome analysis were combined 

with the reconstructed network of A. oryzae. 

 

Applying the reporter features algorithm with specific thresholds 

(See Methods), we could identify 33 proteins (see Figure 4) that 

are possible to be the key targets in gene expression regulation in 

response to increased protein production. These 33 proteins can be 

divided into five functional groups, namely 4 proteins involved in 

transcription, 8 proteins involved in RNA processing and transla-

tion, 6 proteins involved in the proteasome, 7 proteins involved in 

post-translation modification and protein secretion, and 8 proteins 

involved in cell cycle and structure.  In the following, we discuss 

two interesting cases of how increased enzyme production causes a 

global response in A. oryzae and hereby may impact the overall 

physiology of the organism.   

 

Analysis of general amino acid control 
 

Not surprisingly, the key proteins are involved in processes of 

protein synthesis since the pairwise t-test analysis from two strains 

comparison was used as input for the network analysis. The ap-

plied reporter features algorithm can identify regulatory hot-spots 

in bio-molecular interaction networks that are significantly af-

fected in response to different conditions. An important regulatory 

hot-spot is the S. cerevisiae protein kinase GCN2 or the Aspergil-

lus homologue CpcC involved in RNA processing and translation 

process (See Figure 4). GCN2/CpcC is known as a sensor for ami-

no acid abundance. It usually enhances the sensitivity of translation 

of the transcription activator GCN4 (as named in S. cerevisiae) or 

CpcA (as named in Aspergillus species), leading to transcriptional 

induction of multiple genes encoding amino acid biosynthetic en-

zymes upon amino acid starvation. In S. cerevisiae, this phenome-

non is called “general control of amino acids”, whereas in Asper-

gillus species, this event is named “cross pathway control of amino 

acid biosynthesis”. Evidently, if the presence of the general con-

trol/the cross pathway control of amino acid biosynthesis occurs by 

the GCN2/CpcC protein kinase, then increased expression of mul-

tiple enzymes in different amino acid biosynthetic pathways is 

found. Since the reporter feature analysis identified GCN2/CpcC 

as one of the regulatory hot-spots, we hypothesize that the cross 

pathway control of amino acid biosynthesis in A. oryzae is likely to 

occur in connection with increased protein production. 

To test our hypothesis, we used the amino acid biosynthetic en-

zymes that are known to be under general amino acid control in 

yeast, fungi and bacteria as a query list and searched against our 

comparative transcriptome data between the wild type strain 

A1560 and the transformant strain  CF1.1 in order to see if we 

could find these enzymes. As expected, we found several enzymes 

subject that are targets for cross pathway control in A. oryzae, and 

this indicates that amino acid starvation is likely to occur in the 

transformant CF1.1 as most of the genes encoding amino acid 

enzymes were up-regulated, such as multiple enzymes in tyrosine, 

tryptophan, ariginine, histidine, lysine, isoleucine, valine, and gen-

eral aromatic amino acids biosynthesis. A list of the enzymes sub-

ject to the cross pathway control is given in Table 2. 

 

Proteasome

Post-translation modification

and protein secretion

Transcription

Cell cycle and structure

RNA processing and 

translation

 
Figure 4 An interaction network of 33 key proteins identified as a 

global response to increased protein production. The connectivity 

among the proteins (the nodes) is based on the interactions stored 

at the BioGRID database of the yeast S. cerevisiae. The network 

was drawn by using Cytoscape (http://www.cytoscape.org). 

 

Analysis of occurrence of Unfolded Protein Response 

(UPR) 
HAC1 was also identified as one of the key proteins in the protein-

protein interaction network. This protein is a key regulatory com-

ponent of the UPR pathway that is activated in response to poor 

protein folding that leads to block in the protein secretion pathway, 

which is obviously an important step for protein production. In 

eukaryotic cells, the synthesized proteins are folded and assembled 

in the endoplasmic reticulum (ER). The ER provides an oxidising 

environment in which protein folding is assisted by a number of 

molecular chaperones and folding enzymes. Protein folding in the 

ER can be compromised by several endogenous and exogenous 

factors such as changing environmental conditions or genetic per-

turbations. This event leads to the accumulation of unfolded pro-

teins within the ER and this lead to ER stress conditions. To main-

tain homeostasis of ER functions, the cell reacts to the accumula-

tion of unfolded proteins in the ER by inducing a pathway known 

as the UPR. The UPR pathway has been studied in A. oryzae and 

four key components of this pathway are: (1) The HAC1 protein is 

a transcription activator that up-regulates the transcription of vari-

ous target-genes of the UPR pathway; (2) The Bip protein is a 
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chaperone of the HSP70 class that plays an important role in the 

UPR; (3) The Pdi is a luminal ER enzyme that catalysts the 

mechanism of disulfide bond formation; (4) The Ppi is an enzyme 

of catalyzing the cis-trans isomerisation of a peptide bond on the 

N-terminal side of proline residues in polypeptides.  

Since the reporter feature algorithm revealed that HAC1 is an im-

portant protein in response to the protein secretion, we reasoned 

that the UPR pathway is activated in the α-amylase over-producing 

strain CF1.1. To test our assumption, three UPR-relevant genes 

known to be controlled by HAC1 in A. oryzae were selected, and 

our transcriptome results showed that the UPR pathway is very 

likely to be active, since the three target genes in the UPR pathway 

were up-regulated in the transformant strain CF1.1 (See Supple-

mentary file 3), namely AO090003000257 gene-encoding Bip 

protein, AO090001000733 gene-encoding Pdi protein, 

AO090023000811 gene-encoding Ppi protein.  

 

 

Analysis of amino acid consumptions 
 

We performed comparative analysis of amino acid consumptions 

in terms of metabolic flux calculation for synthesis of protein con-

tent in biomass and α-amylase between the two strains (wild type 

A1560 and transformant CF1.1). Based on the amino acid compo-

sition in biomass protein and α-amylase, the specific consumption 

rate of each of the 20 amino acids (as mmol gDW-1h-1) was calcu-

lated for the two strains, the results are summarized in Table 3 (See 

more results in supplementary file 5). In terms of flux calculation, 

we found that in particularly four amino acids are drained substan-

tially more in the CF1.1 strain due to the over-production of α-

amylase, and the biosynthesis of these amino acids could be possi-

ble targets for further increasing the protein production by the 

transformant strain CF1.1. These four candidate amino acids are 

tyrosine, aspartate, cysteine and threonine.  

DISCUSSION 

Integrated data analysis as a scaffold for analysis of industrial 

enzyme fermentation process 

 

We demonstrated that by performing integrated data analysis, i.e., 

genomics, transcriptomics, interactomes (protein–protein interac-

tions), metabolic networks and flux analysis, it is possible to iden-

tify key regulatory pathways involved in protein production. From 

comparative transcriptome analysis of two strains (wild type 

A1560 and transformant CF1.1), we identified that several key 

processes involved in protein synthesis and secretion are affected 

at the transcriptional level in response to high-level protein produc-

tion. We found key metabolites and key enzymes in nucleotide 

metabolism (purine and pyrimidine biosynthesis) used for synthe-

sis of DNA and RNA (i.e. mRNA, tRNA and rRNA). In addition, 

we found several amino acid biosynthetic enzymes whose genes 

are significantly changed in the metabolic sub-networks with re-

spect to protein production, such as tyrosine, aspartate, cysteine 

and threonine (See Figure 3). The results obtained from flux calcu-

lations support that these four amino acids (See Table 3) are play-

ing key role for increased α-amylase production. To find out key 

regulatory steps, a global interaction network (protein-protein inte-

raction) of A. oryzae was reconstructed. The reporter feature algo-

rithm was applied to this network and hereby 33 proteins were 

identified that are possible key targets regulating gene expression 

in response to increased level of protein production. 2 proteins out 

of the 33 proteins, namely GCN2/CpcC and HAC1, suggest that 

the limiting step for production of α-amylase is control of general 

amino acids upon starvation and lack of folding capacity in the ER 

resulting in an UPR. In addition to these 2 proteins, the other key 

proteins also imply that other steps in protein production are li-

mited, such as transcription, RNA processing and translation, post-

translational modification, and proteasome degradation.  

 

In addition to a comparative strain study, we also provided evi-

dence for carbon source induction for α-amylase production. We 

studied influence of maltose on induction of α-amylase. Our tran-

scriptome analysis of transformant strain CF1.1 showed that mal-

tose is an inducible carbon source. The results from strain CF1.1 

showed consistency with our previous publication of strain A1560 

(Vongsangnak et al., 2009) that gene function is  specific to mal-

tose degradation enzymes and also genes encoding secreted carbo-

hydrases (See more results in Supplementary file 6). For example, 

there are genes encoding α-amylases, α-glucosidases, maltose per-

meases, and glucoamylases. 

 

From this study, one can obtain a better understanding of the com-

plex relationship of biological processes in response to high level 

protein production. Our work therefore revealed the key play-

ers/targets (i.e. genes, enzymes, proteins, metabolites and path-

ways) in response to α-amylase production that may lead us to 

further improvements of industrial enzyme fermentation processes. 

We believe that the integrated data analysis can be a scaffold for 

identifying possible limiting steps for protein production and 

hereby strategies for strain improvement or process optimization of 

A. oryzae in relation to industrial enzyme production. 
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Table 2 List of enzymes subject to general amino acid control/cross pathway control targets (P-value<0.05) 

 

Gene name  Enzyme name Common name Up/down  

Tryptophan biosynthesis    

AO090012000581 Anthranilate synthase (Multifunctional protein) TRP2 Up 

AO090012000581 indole-3-glycerol-phosphate synthase TRP3 Up 

AO090012000581 phosphoribosylanthranilate isomerase TRP1 Up 

AO090003001011 Anthranilate phosphoribosyltransferase TRP4 Up 

AO090005001315 Tryptophan synthase beta chain TRP5 Up 

Arginine biosynthesis   

AO090026000498 Acetylglutamate kinase ARG2 Up 

AO090026000498 Acetylglutamate synthase ARG6 Up 

AO090020000418 Argininosuccinate lyase ARG4 Up 

AO090701000214 

Multifunctional pyrimidine synthesis protein CAD 

(includes carbamoyl-phophate synthetase, aspartate 

transcarbamylase, and glutamine amidotransferase) 

CPA1 Down 

Histidine biosynthesis   

AO090206000105 Histidinol-phosphatase HIS2 Up 

AO090012000450 Histidinol phosphate aminotransferase HIS5 Up 

Lysine biosynthesis    

AO090026000245 Transaminases (Aromatic aminotransferases)  Up 

AO090001000516 Alpha-aminoadipate reductase and related enzymes LYS2 Up 

Isoleucine and valine biosynthesis   

AO090166000076 Acetolactate synthase, large subunit ILV2 Up 

Leucine biosynthesis   

AO090010000218 Isoleucyl-tRNA synthetase ILS1 Up 

Tyrosine biosynthesis 
Tyrosine decarboxylase  Up 

AO090003000301 

AO090001000383 Tyrosinase  Up 
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Table 3 Consumption of amino acids required for synthesis protein contents in biomass and α-amylase for two strains (wild type A1560 

and transformant CF1.1)  

  %  fluxes (mmol gDW-1h-1)   

  Wild type A1560 Transformant CF1.1 CF1.1/A1560 

Amino acid 

Protein contents for 

biomass α-amylase 

Protein contents for 

biomass α-amylase Ratio 

Glycine 12.4362 0.1548 11.1860 0.2838 0.1032 

Serine 8.7318 0.1350 7.8540 0.2475 0.1282 

Cysteine 1.4553 0.0342 1.3090 0.0627 0.1948 

Alanine 12.5685 0.1404 11.3050 0.2574 0.0926 

Valine 8.4672 0.1170 7.6160 0.2145 0.1145 

Leucine 9.1287 0.1278 8.2110 0.2343 0.1161 

Phenylalanine 4.1013 0.0522 3.6890 0.0957 0.1055 

Tryptophan 2.3814 0.0378 2.1420 0.0693 0.1316 

Tyrosine 3.7044 0.1314 3.3320 0.2409 0.2940 

Histidine 2.6460 0.0270 2.3800 0.0495 0.0846 

Aspartate 6.0858 0.1548 5.4740 0.2838 0.2109 

Methionine 1.8522 0.0342 1.6660 0.0627 0.1531 

Isoleucine 5.9535 0.1062 5.3550 0.1947 0.1479 

Lysine 7.5411 0.0756 6.7830 0.1386 0.0831 

Threonine 6.3504 0.1476 5.7120 0.2706 0.1927 

Asparagine 6.0858 0.0972 5.4740 0.1782 0.1324 

Arginine 5.8212 0.0378 5.2360 0.0693 0.0538 

Glutamate 10.5840 0.0450 9.5200 0.0825 0.0352 

Glutamine 10.5840 0.0720 9.5200 0.1320 0.0564 

Proline 6.2181 0.0756 5.5930 0.1386 0.1008 
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SUPPLEMENTARY FILES 

Supplementary file 1 

File format: XLS 

Description: This file provides the normalized intensities of two 

strains of A.  oryzae (transformant strain CF1.1 and wild type 

strain A1560) on glucose condition (See Table S1.1) or on maltose 

condition (See Table S1.2)  considering all the categories of the 

three biological replicated experiments. 

 

Supplementary file 2 

File format: XLS 

Description: This file provides Supplementary table (Table S1) for 

statistical details of comparative protein sequence analysis between 

S. cerevisiae and A. oryzae. Statistical values are presented: E-

value, % identity and alignment length.  

 

Supplementary file 3 

File format: XLS 

Description:  List of 2,560 significantly regulated expressed genes 

between two strains of A.  oryzae  (CF1.1 and A1560) with annota-

tion  and  statistical  values  indicated  in  each  gene  (adjust P-

value and Log2-fold change).  The genes are sorted according to 

functional category. 

 

Supplementary file 4 

File format: SIF 

Description:  A protein-protein interaction data of A. oryzae 

 

Supplementary file 5 
File format: XLS 

Description:  Flux calculation of amino acid consumption between 

wild type strain A1560 and transformant strain CF1.1. 

 

Supplementary file 6 

File format: XLS 

Description:  List of significant genes obtained from comparative 

transcriptome analysis between maltose and glucose for transfor-

mant strain CF1.1 
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SYSBIOMICS of Aspergilli: 

SYStems Biology, BIoinformatics and OMICS analysis of Aspergilli cell factories 

 

Aspergili are one of the most important fungal species.  Three members of the genus 

Aspergillus are widely used as industrial workhorses in production of enzymes and chemicals 

and as key models for basic scientific work, namely Aspergillus oryzae, Aspergillus niger and 

Aspergillus nidulans, are particularly interested in this study. Due to their wide applications, it 

is valuable to gain understanding of their metabolism, regulation and evolution with respect to 

genotypes and phenotypes, as this may lead to improve industrial fermentation processes for 

desired product formation (e.g. enzymes). We therefore applied three approaches for this 

investigation, namely SYStems biology, BIoinformatics and OMICS analysis 

(SYSBIOMICS).  

Firstly, we developed BIoinformatics strategies to improve the genome annotation of A. 

oryzae and this improved annotation was used to reconstruct a high quality genome-scale 

metabolic network that could be used for mathematical modeling of the physiology and for 

OMICS data integration, which are the core of SYStems biology. Secondly, we designed a tri-

Aspergillus DNA microarray chip to monitor the global regulation response at the 

transcriptional level.  This DNA chip has been exploited to reveal conserved regulatory 

responses through evolution in the three aspergilli in response to changes in carbon source. 

This resulted in mapping of key regulatory points of metabolism in these fungi, and it showed 

that SYSBIOMICS analysis of transcriptional data can lead to reconstruction of how carbon 

metabolism is regulated. Lastly, we also applied the SYSBIOMICS concept to identify 

possible key players/targets associated with protein production in a high producing strain of 

A. oryzae. This analysis may enable diagnosis and improvement of industrial process of 

protein production.  

In conclusion, through a number of studies it has been demonstrated in this thesis that 

SYSBIOMICS can find wide applications in industrial biotechnology and assist in improving 

industrial process required for sustainable production of enzymes and chemicals in the future.  
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